The previous macro definition using `{...}` would fail to compile when the callsite uses a semicolon followed by an else-statement (i.e., `if (...) FATAL(...); else ...;`). Replacing the simple braces with `do{...}while(0)` (n.b., semicolon not included in the macro definition) enables callsites to use the semicolon plus else-statement syntax without problems. The new definition now requires the semicolon at all callsites, but since it was already being called that way nothing changes.
For more explanation, see <https://gcc.gnu.org/onlinedocs/cpp/Swallowing-the-Semicolon.html>
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D126514
The primary goal of this change is to define readSparseTensorShape. Whereas the SparseTensorFile class is merely introduced as a way to reduce code duplication along the way.
Depends On D126106
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D126233
The semicolons were introduced in D126105 in order to correct clang-format, but I forgot this file must be compiled as C++98 rather than C++11.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D126561
This is a followup to D126105 to move functions in SparseTensorUtils.cpp to match their locations in SparseTensorUtils.h
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D126106
This change makes the public API of SparseTensorUtils.cpp explicit, whereas before the publicity of these functions was only implicit. Implicit publicity is sufficient for mlir-opt to generate calls to these functions, but it's not enough to enable C/C++ code to call them directly in the usual way (i.e., without going through codegen). Thus, leaving the publicity implicit prevents development of other tools (e.g., microbenchmarks).
In addition this change also marks the functions MLIR_CRUNNERUTILS_EXPORT, which is required by the JIT under certain configurations (albeit not for anything in our test suite).
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D126105
By closing over the `rank` itself rather than `this`, we save a method call on each iteration. A minor optimization, but one that adds up.
Depends On D126016
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D126019
This is a followup to D125431, to keep from confusing the machinery that generates diffs (since combining these two changes into one would obfuscate the changes actually made in the previous differential).
Depends On D125431
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D125432
In addition to reducing code repetition, this also helps ensure that the various API functions follow the naming convention of mlir::sparse_tensor::primaryTypeFunctionSuffix (e.g., due to typos in the repetitious code).
Depends On D125428
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D125431
This enables the compiler to perform devirtualization. And benchmarks
indicate devirtualization can sometimes give considerable speedup.
Depends On D122061
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D125428
This is the first implementation of complex (f64 and f32) support
in the sparse compiler, with complex add/mul as first operations.
Note that various features are still TBD, such as other ops, and
reading in complex values from file. Also, note that the
std::complex<float> had a bit of an ABI issue when passed as
single argument. It is still TBD if better solutions are possible.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D125596
D125214 split off a MLIRExecutionEngineUtils library that is used
by MLIRGPUTransforms. However, currently the entire ExecutionEngine
directory is skipped if the LLVM_NATIVE_ARCH target is not available.
Move the check for LLVM_NATIVE_ARCH, such that MLIRExecutionEngineUtils
always gets built, and only the JIT-related libraries are omitted
without native arch.
Differential Revision: https://reviews.llvm.org/D125357
Building libMLIR.so currently fails with:
> /usr/bin/ld: /tmp/ccNzulEA.ltrans39.ltrans.o: in function `(anonymous namespace)::SerializeToHsacoPass::optimizeLlvm(llvm::Module&, llvm::TargetMachine&)':
> /builddir/build/BUILD/llvm-project-15.0.0.src/mlir/lib/Dialect/GPU/Transforms/SerializeToHsaco.cpp:328: undefined reference to `mlir::makeOptimizingTransformer(unsigned int, unsigned int, llvm::TargetMachine*)'
This is because MLIRGPUTransforms depends on MLIRExecutionEngine in
61bb2e4ea8/mlir/lib/Dialect/GPU/Transforms/SerializeToHsaco.cpp (L328),
but MLIRExecutionEngine is marked as excluded from libMLIR.so.
However, this code doesn't require the full execution engine: It
only performs middle-end optimization, and does not need any of
the JIT/codegen infrastructure. As such, split off a separate
library MLIRExecutionEngineUtils, which only contains that part
and is not excluded from libMLIR.so.
Fixes https://github.com/llvm/llvm-project/issues/54242.
Differential Revision: https://reviews.llvm.org/D125214
The names of the functions that are supposed to be exported do not match the implementations. This is due in part to cac7aabbd8.
This change makes the implementations and declarations match and adds a couple missing declarations.
The new names follow the pattern of the existing `verify` functions where the prefix is maintained as `_mlir_ciface_` but the suffix follows the new naming convention.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D124891
This will enable our usual set of element types in external
environments, such as PyTACO support.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D124875
By using a shared index pool, we reduce the footprint of each "Element"
in the COO scheme and, in addition, reduce the overhead of allocating
indices (trading many allocations of vectors for allocations in a single
vector only). When the capacity is known, this means *all* allocation
can be done in advance.
This is a big win. For example, reading matrix SK-2005, with dimensions
50,636,154 x 50,636,154 and 1,949,412,601 nonzero elements improves
as follows (time in ms), or about 3.5x faster overall
```
SK-2005 before after speedup
---------------------------------------------
read 305,086.65 180,318.12 1.69
sort 2,836,096.23 510,492.87 5.56
pack 364,485.67 312,009.96 1.17
---------------------------------------------
TOTAL 3,505,668.56 1,002,820.95 3.50
```
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D124502
Switch CUDA runtime wrapper for GPU mem alloc/free to async. The
semantics of the GPU dialect ops (gpu.alloc/dealloc) and the wrappers it
lowered to (gpu-to-llvm) was for the async versions -- however, this was
being incorrectly mapped to cuMemAlloc/cuMemFree instead of
cuMemAllocAsync/cuMemFreeAsync.
Reviewed By: csigg
Differential Revision: https://reviews.llvm.org/D123482
Adding annotations on as-needed bases, currently only for memrefCopy, but in general all C API functions that take pointers to memory allocated/initialized inside the jit-compiled code must be annotated, to be able to run with msan.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D123557
Use the new pass manager.
This also removes the ability to run arbitrary sets of passes. Not sure if this functionality is used, but it doesn't seem to be tested.
No need to initialize passes outside of constructing the PassBuilder with the new pass manager.
Reland: Fixed custom calls to `-lower-matrix-intrinsics` in integration tests by replacing them with `-O0 -enable-matrix`.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D123425
Use the new pass manager.
This also removes the ability to run arbitrary sets of passes. Not sure if this functionality is used, but it doesn't seem to be tested.
No need to initialize passes outside of constructing the PassBuilder with the new pass manager.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D123425
This avoids a rather big bug where we were reserving
dense space for the ptx/idx in the first sparse dimension.
For example, using CSR for a 140874 x 140874 matrix with
3977139 nonzero would reserve the full 19845483876 space.
This revision fixes this for now, but we need to revisit
the reservation heuristic to make this better.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D123166
This removes tens of warnings from build logs that we can't do
anything about.
Reviewed By: pcf000
Differential Revision: https://reviews.llvm.org/D122927
This change introduces two new methods: `finalizeSegment` and `appendIndex`; and removes three old methods: `endDim`, `appendCurrentPointer`, `appendIndex`. The two new methods better encapsulate their algorithms, thus allowing to remove repetitious code in several other places.
Depends On D122435
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D122625
Prior to this change there were a number of places where the allocation and deallocation of SparseTensorCOO objects were not cleanly paired, leading to inconsistencies regarding whether each function released its tensor/coo arguments or not, as well as making it easy to run afoul of memory leaks, use-after-free, or double-free errors. This change cleans up the codegen vs runtime boundary to resolve those issues. Now, the only time the runtime library frees an object is either (a) because it's a function explicitly designed to do so, or (b) because the allocated object is entirely local to the function and would be a memory leak if not released. Thus, now the codegen takes complete responsibility for releasing any objects it caused to be allocated.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D122435
I'm using "shape" to mean the compile-time object, where zeros indicate sizes which are compile-time dynamic; and using "sizes" to mean the run-time object, where zeros indicate a dimension with no coordinates (hence resulting in trivial storage). Because their semantics differ on zeros, it's important to keep them distinguished. Although we do not define separate C++ types to capture the distinction, we can at least use variable names to do so.
This is (tangential) work towards fixing: https://github.com/llvm/llvm-project/issues/51652
Depends On D122057
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D122058
This is the more logical place for the function to live. If/when we factor out a separate class for just the `Coordinates` themselves, then the definition should be moved to `Coordinates::lexOrder` (and `Element::lexOrder` would become a thin wrapper delegating to that function).
This is (tangentially) work towards fixing: https://github.com/llvm/llvm-project/issues/51652
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D122057
This removes any potential confusion with the `getType` accessors
which correspond to SSA results of an operation, and makes it
clear what the intent is (i.e. to represent the type of the function).
Differential Revision: https://reviews.llvm.org/D121762
The enableObjectCache option was added in
https://reviews.llvm.org/rG06e8101034e, defaulting to false. However,
the init code added there got its logic reversed
(cache(enableObjectCache ? nullptr : new SimpleObjectCache()), which was
fixed in https://reviews.llvm.org/rGd1186fcb04 by setting the default to
true, thereby preserving the existing behavior even if it was
unintentional.
Default now the object cache to false as it was originally intended.
While at it, mention in enableObjectCache's documentation how the
cache can be dumped.
Reviewed-by: mehdi_amini
Differential Revision: https://reviews.llvm.org/D121291