This is a follow-on to:
https://github.com/llvm/llvm-project/pull/82085
The completer for register names was missing from the argument table. I
somehow missed that the only register completer test was x86_64, so that
test broke.
I added the completer in to the right slot in the argument table, and
added a small completions test that just uses the alias register names.
If we end up having a platform that doesn't define register names, we'll
have to skip this test there, but it should add a sniff test for
register completion that will run most everywhere.
Updates:
- The previous patch changed the default behavior to not load dwos in
`DWARFUnit`
~~`SymbolFileDWARFDwo *GetDwoSymbolFile(bool load_all_debug_info =
false);`~~
`SymbolFileDWARFDwo *GetDwoSymbolFile(bool load_all_debug_info = true);`
- This broke some lldb-shell tests (see
https://green.lab.llvm.org/green/view/LLDB/job/as-lldb-cmake/16273/)
- TestDebugInfoSize.py
- with symbol on-demand, by default statistics dump only reports
skeleton debug info size
- `statistics dump -f` will load all dwos. debug info = skeleton debug
info + all dwo debug info
Currently running `statistics dump` will trigger lldb to load debug info
that's not yet loaded (eg. dwo files). Resulted in a delay in the
command return, which, can be interrupting.
This patch also added a new option `--load-all-debug-info` asking
statistics to dump all possible debug info, which will force loading all
debug info available if not yet loaded.
Currently running `statistics dump` will trigger lldb to load debug info
that's not yet loaded (eg. dwo files). Resulted in a delay in the
command return, which, can be interrupting.
This patch also added a new option `--load-all-debug-info` asking
statistics to dump all possible debug info, which will force loading all
debug info available if not yet loaded.
assertRegexpMatches is a deprecated alias for assertRegex and has been
removed in Python 3.12. This wasn't an issue previously because we used
a vendored version of the unittest module. Now that we use the built-in
version this gets updated together with the Python version used to run
the test suite.
assertEquals is a deprecated alias for assertEqual and has been removed
in Python 3.12. This wasn't an issue previously because we used a
vendored version of the unittest module. Now that we use the built-in
version this gets updated together with the Python version used to run
the test suite.
Fix and rename the broken and confusingly named decorator
skipIfHostIncompatibleWithRemote. The decorator is meant to skip test
which uses the inferior test build system (i.e. to build test inferiors)
to build host binaries (e.g. lldb drivers).
The decorator was broken on macOS, where the host and target platform
report macosx, but the decorator overwrote it with Darwin, resulting in
tests incorrectly being skipped.
The decorator was also missing on a handful of tests that use the
buildDriver helper, which this commit fixes as well.
Switching to modern `unittest` in
5b386158aa needs xfail annotations to be
known prior to test running. In contrast, skipping can happen at any
time, even during test execution.
Thus, `expectedFailureIfFn` inherently doesn't work. Either we eagerly
evaluate the function and use `expectedFailureIf` instead, or we use a
skip annotation to lazily evaluate the function and potentially skip the
test right before it starts.
- For `expectedFailureAndroid`, the intent seems to be that certain
tests _should_ work on android, but don't. Thus, xfail is appropriate,
to ensure the test is re-enabled once those bugs are ever fixed.
- For the other uses in individual tests, those generally seem to be
cases where the test environment doesn't support the setup required by
the test, and so it isn't meaningful to run the test at all. For those,
a drop-in replacement to `skipTestIfFn` works.
This removes the dependency LLDB API tests have on
lldb/third_party/Python/module/unittest2, and instead uses the standard
one provided by Python.
This does not actually remove the vendored dep yet, nor update the docs.
I'll do both those once this sticks.
Non-trivial changes to call out:
- expected failures (i.e. "bugnumber") don't have a reason anymore, so
those params were removed
- `assertItemsEqual` is now called `assertCountEqual`
- When a test is marked xfail, our copy of unittest2 considers failures
during teardown to be OK, but modern unittest does not. See
TestThreadLocal.py. (Very likely could be a real bug/leak).
- Our copy of unittest2 was patched to print all test results, even ones
that don't happen, e.g. `(5 passes, 0 failures, 1 errors, 0 skipped,
...)`, but standard unittest prints a terser message that omits test
result types that didn't happen, e.g. `OK (skipped=1)`. Our lit
integration parses this stderr and needs to be updated w/ that
expectation.
I tested this w/ `ninja check-lldb-api` on Linux. There's a good chance
non-Linux tests have similar quirks, but I'm not able to uncover those.
This formatter
https://github.com/llvm/llvm-project/pull/78609
was originally passing the signed seconds (which can refer to times in
the past) with an unsigned printf formatter, and had tests that expected
to see negative values from the printf which always failed on macOS. I'm
not clear how they ever passed on any platform.
Fix the printf to print seconds as a signed value, and re-enable the
tests.
debugserver on arm64 devices can manage both Byte Address Select
watchpoints (1-8 bytes) and MASK watchpoints (8 bytes-2 gigabytes). This
adds a SupportedWatchpointTypes key to the QSupported response from
debugserver with a list of these, so lldb can take full advantage of
them when creating larger regions with a single hardware watchpoint.
Also add documentation for this, and two other lldb extensions, to the
lldb-gdb-remote.txt documentation.
Re-enable TestLargeWatchpoint.py on Darwin systems when testing with the
in-tree built debugserver. I can remove the "in-tree built debugserver"
in the future when this new key is handled by an Xcode debugserver.
We have a Python script that needs to locate coredump path during
debugging so that we can retrieve certain metadata files associated with
it. Currently, there is no API for this.
This patch adds a new `SBProcess::GetCoreFile()` to retrieve target dump
file spec used for dump debugging. Note: this is different from the main
executable module spec. To achieve this, the patch hoists m_core_file
into PostMortemProcess for sharing.
---------
Co-authored-by: jeffreytan81 <jeffreytan@fb.com>
Adding command interpreter statistics into "statistics dump" command so
that we can track the command usage frequency for telemetry purpose.
This is useful to answer questions like what is the most frequently used
lldb commands across all our users.
---------
Co-authored-by: jeffreytan81 <jeffreytan@fb.com>
This patch is the next piece of work in my Large Watchpoint proposal,
https://discourse.llvm.org/t/rfc-large-watchpoint-support-in-lldb/72116
This patch breaks a user's watchpoint into one or more
WatchpointResources which reflect what the hardware registers can cover.
This means we can watch objects larger than 8 bytes, and we can watched
unaligned address ranges. On a typical 64-bit target with 4 watchpoint
registers you can watch 32 bytes of memory if the start address is
doubleword aligned.
Additionally, if the remote stub implements AArch64 MASK style
watchpoints (e.g. debugserver on Darwin), we can watch any power-of-2
size region of memory up to 2GB, aligned to that same size.
I updated the Watchpoint constructor and CommandObjectWatchpoint to
create a CompilerType of Array<UInt8> when the size of the watched
region is greater than pointer-size and we don't have a variable type to
use. For pointer-size and smaller, we can display the watched granule as
an integer value; for larger-than-pointer-size we will display as an
array of bytes.
I have `watchpoint list` now print the WatchpointResources used to
implement the watchpoint.
I added a WatchpointAlgorithm class which has a top-level static method
that takes an enum flag mask WatchpointHardwareFeature and a user
address and size, and returns a vector of WatchpointResources covering
the request. It does not take into account the number of watchpoint
registers the target has, or the number still available for use. Right
now there is only one algorithm, which monitors power-of-2 regions of
memory. For up to pointer-size, this is what Intel hardware supports.
AArch64 Byte Address Select watchpoints can watch any number of
contiguous bytes in a pointer-size memory granule, that is not currently
supported so if you ask to watch bytes 3-5, the algorithm will watch the
entire doubleword (8 bytes). The newly default "modify" style means we
will silently ignore modifications to bytes outside the watched range.
I've temporarily skipped TestLargeWatchpoint.py for all targets. It was
only run on Darwin when using the in-tree debugserver, which was a proxy
for "debugserver supports MASK watchpoints". I'll be adding the
aforementioned feature flag from the stub and enabling full mask
watchpoints when a debugserver with that feature is enabled, and
re-enable this test.
I added a new TestUnalignedLargeWatchpoint.py which only has one test
but it's a great one, watching a 22-byte range that is unaligned and
requires four 8-byte watchpoints to cover.
I also added a unit test, WatchpointAlgorithmsTests, which has a number
of simple tests against WatchpointAlgorithms::PowerOf2Watchpoints. I
think there's interesting possible different approaches to how we cover
these; I note in the unit test that a user requesting a watch on address
0x12e0 of 120 bytes will be covered by two watchpoints today, a
128-bytes at 0x1280 and at 0x1300. But it could be done with a 16-byte
watchpoint at 0x12e0 and a 128-byte at 0x1300, which would have fewer
false positives/private stops. As we try refining this one, it's helpful
to have a collection of tests to make sure things don't regress.
I tested this on arm64 macOS, (genuine) x86_64 macOS, and AArch64
Ubuntu. I have not modifed the Windows process plugins yet, I might try
that as a standalone patch, I'd be making the change blind, but the
necessary changes (see ProcessGDBRemote::EnableWatchpoint) are pretty
small so it might be obvious enough that I can change it and see what
the Windows CI thinks.
There isn't yet a packet (or a qSupported feature query) for the gdb
remote serial protocol stub to communicate its watchpoint capabilities
to lldb. I'll be doing that in a patch right after this is landed,
having debugserver advertise its capability of AArch64 MASK watchpoints,
and have ProcessGDBRemote add eWatchpointHardwareArmMASK to
WatchpointAlgorithms so we can watch larger than 32-byte requests on
Darwin.
I haven't yet tackled WatchpointResource *sharing* by multiple
Watchpoints. This is all part of the goal, especially when we may be
watching a larger memory range than the user requested, if they then add
another watchpoint next to their first request, it may be covered by the
same WatchpointResource (hardware watchpoint register). Also one "read"
watchpoint and one "write" watchpoint on the same memory granule need to
be handled, making the WatchpointResource cover all requests.
As WatchpointResources aren't shared among multiple Watchpoints yet,
there's no handling of running the conditions/commands/etc on multiple
Watchpoints when their shared WatchpointResource is hit. The goal beyond
"large watchpoint" is to unify (much more) the Watchpoint and Breakpoint
behavior and commands. I have a feeling I may be slowly chipping away at
this for a while.
Re-landing this patch after fixing two undefined behaviors in
WatchpointAlgorithms found by UBSan and by failures on different
CI bots.
rdar://108234227
This patch is the next piece of work in my Large Watchpoint proposal,
https://discourse.llvm.org/t/rfc-large-watchpoint-support-in-lldb/72116
This patch breaks a user's watchpoint into one or more
WatchpointResources which reflect what the hardware registers can cover.
This means we can watch objects larger than 8 bytes, and we can watched
unaligned address ranges. On a typical 64-bit target with 4 watchpoint
registers you can watch 32 bytes of memory if the start address is
doubleword aligned.
Additionally, if the remote stub implements AArch64 MASK style
watchpoints (e.g. debugserver on Darwin), we can watch any power-of-2
size region of memory up to 2GB, aligned to that same size.
I updated the Watchpoint constructor and CommandObjectWatchpoint to
create a CompilerType of Array<UInt8> when the size of the watched
region is greater than pointer-size and we don't have a variable type to
use. For pointer-size and smaller, we can display the watched granule as
an integer value; for larger-than-pointer-size we will display as an
array of bytes.
I have `watchpoint list` now print the WatchpointResources used to
implement the watchpoint.
I added a WatchpointAlgorithm class which has a top-level static method
that takes an enum flag mask WatchpointHardwareFeature and a user
address and size, and returns a vector of WatchpointResources covering
the request. It does not take into account the number of watchpoint
registers the target has, or the number still available for use. Right
now there is only one algorithm, which monitors power-of-2 regions of
memory. For up to pointer-size, this is what Intel hardware supports.
AArch64 Byte Address Select watchpoints can watch any number of
contiguous bytes in a pointer-size memory granule, that is not currently
supported so if you ask to watch bytes 3-5, the algorithm will watch the
entire doubleword (8 bytes). The newly default "modify" style means we
will silently ignore modifications to bytes outside the watched range.
I've temporarily skipped TestLargeWatchpoint.py for all targets. It was
only run on Darwin when using the in-tree debugserver, which was a proxy
for "debugserver supports MASK watchpoints". I'll be adding the
aforementioned feature flag from the stub and enabling full mask
watchpoints when a debugserver with that feature is enabled, and
re-enable this test.
I added a new TestUnalignedLargeWatchpoint.py which only has one test
but it's a great one, watching a 22-byte range that is unaligned and
requires four 8-byte watchpoints to cover.
I also added a unit test, WatchpointAlgorithmsTests, which has a number
of simple tests against WatchpointAlgorithms::PowerOf2Watchpoints. I
think there's interesting possible different approaches to how we cover
these; I note in the unit test that a user requesting a watch on address
0x12e0 of 120 bytes will be covered by two watchpoints today, a
128-bytes at 0x1280 and at 0x1300. But it could be done with a 16-byte
watchpoint at 0x12e0 and a 128-byte at 0x1300, which would have fewer
false positives/private stops. As we try refining this one, it's helpful
to have a collection of tests to make sure things don't regress.
I tested this on arm64 macOS, (genuine) x86_64 macOS, and AArch64
Ubuntu. I have not modifed the Windows process plugins yet, I might try
that as a standalone patch, I'd be making the change blind, but the
necessary changes (see ProcessGDBRemote::EnableWatchpoint) are pretty
small so it might be obvious enough that I can change it and see what
the Windows CI thinks.
There isn't yet a packet (or a qSupported feature query) for the gdb
remote serial protocol stub to communicate its watchpoint capabilities
to lldb. I'll be doing that in a patch right after this is landed,
having debugserver advertise its capability of AArch64 MASK watchpoints,
and have ProcessGDBRemote add eWatchpointHardwareArmMASK to
WatchpointAlgorithms so we can watch larger than 32-byte requests on
Darwin.
I haven't yet tackled WatchpointResource *sharing* by multiple
Watchpoints. This is all part of the goal, especially when we may be
watching a larger memory range than the user requested, if they then add
another watchpoint next to their first request, it may be covered by the
same WatchpointResource (hardware watchpoint register). Also one "read"
watchpoint and one "write" watchpoint on the same memory granule need to
be handled, making the WatchpointResource cover all requests.
As WatchpointResources aren't shared among multiple Watchpoints yet,
there's no handling of running the conditions/commands/etc on multiple
Watchpoints when their shared WatchpointResource is hit. The goal beyond
"large watchpoint" is to unify (much more) the Watchpoint and Breakpoint
behavior and commands. I have a feeling I may be slowly chipping away at
this for a while.
rdar://108234227
This file used a strange, multi-level setup where we skipped on
a function we used for xfailing. Let's not do that, just skip
the one test we care about.
Also added a comment to explain how this file works. The tests
*want* calls to fail when we ask for only hardware breaks
but have none to use.
If you don't know that, it all seems backwards.
Temporarily revert to unblock the CI bots, this is breaking the -DLLVM_ENABLE_MODULES=On
modules style build. I've notified Ismail.
This reverts commit 888501bc63.
This patch makes ScriptedThreadPlan conforming to the ScriptedInterface
& ScriptedPythonInterface facilities by introducing 2
ScriptedThreadPlanInterface & ScriptedThreadPlanPythonInterface classes.
This allows us to get rid of every ScriptedThreadPlan-specific SWIG
method and re-use the same affordances as other scripting offordances,
like Scripted{Process,Thread,Platform} & OperatingSystem.
To do so, this adds new transformer methods for `ThreadPlan`, `Stream` &
`Event`, to allow the bijection between C++ objects and their python
counterparts.
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
On macOS, the formatter is printing signed values as
unsigned, it seems, and the tests are expecting correctly
signed values. These tests were added in
https://github.com/llvm/llvm-project/pull/78609
Starting with macOS 14, the `NSTimeZone` and `CFTimeZone` types are backed by swift
implementations. These tests won't pass on mainline lldb, since it doesn't have Swift
support.
ELF does not have a hard distinction between shared libraries (and
position-independent) executables. It is possible to create a shared
library that will also be executable.
We claim in a couple places that the zeroth element of the module list
for a target is the main executable, but we don't actually enforce that
in the ModuleList class. As we saw, for instance, in
32dd5b2097
it's not all that hard to get this to be off. This patch ensures that
the first object file of type Executable added to it is moved to the
front of the ModuleList. I also added a test for this.
In the normal course of operation, where the executable is added first,
this only adds a check for whether the first element in the module list
is an executable. If that's true, we just append as normal.
Note, the code in Target::GetExecutableModule doesn't actually agree
that the zeroth element must be the executable, it instead returns the
first Module of type Executable. But I can't tell whether that was a
change in intention or just working around the bug that we don't always
maintain this ordering. But given we've said this in scripting as well
as internally, I think we shouldn't change our minds about this.
The test TestTrimmedProgressReporting tests that progress reports are
being sent by listening for events with the titles of specific progress
reports. Commit f1ef910b removed the report for Apple DWARF indices
which was one of the reports being listened for in this test, so that
report is removed here as well.
That commit also now creates all progress reports with details so
reports string are prepended with the details count. This changes the
length of the trimmed progress report title string that's checked for
here so this commit changes the string to match as well.
This test was skipped on non-Apple platforms, but since the progress
report for Apple DWARF indices has been removed this commit removes that
decorator.
Per this RFC:
https://discourse.llvm.org/t/rfc-improve-lldb-progress-reporting/75717
on improving progress reports, this commit separates the title field and
details field so that the title specifies the category that the progress
report falls under. The details field is added as a part of the
constructor for progress reports and by default is an empty string. In addition, changes the total amount of progress completed into a std::optional. Also
updates the test to check for details being correctly reported from the
event structured data dictionary.
This is a followup of #76983 and adds the libc++ data formatters for
- weekday,
- weekday_indexed,
- weekday_last,
- month_weekday,
- month_weekday_last,
- year_month,
- year_month_day_last
- year_month_weekday, and
- year_month_weekday_last.
This adds a subset of the C++20 calendar data formatters:
- day,
- month,
- year,
- month_day,
- month_day_last, and
- year_month_day.
A followup patch will add the missing calendar data formatters:
- weekday,
- weekday_indexed,
- weekday_last,
- month_weekday,
- month_weekday_last,
- year_month,
- year_month_day_last
- year_month_weekday, and
- year_month_weekday_last.
LLVM supports DWARF 5 linetable extension to store source files inline
in DWARF. This is particularly useful for compiler-generated source
code. This implementation tries to materialize them as temporary files
lazily, so SBAPI clients don't need to be aware of them.
rdar://110926168
BreakpointResolverAddress optionally can include the module name related
to the address that gets resolved. Currently this will never work
because it sets the name to itself (which is empty).
This patch revives the effort to get this Phabricator patch into
upstream:
https://reviews.llvm.org/D137900
This patch was accepted before in Phabricator but I found some
-gsimple-template-names issues that are fixed in this patch.
A fixed up version of the description from the original patch starts
now.
This patch started off trying to fix Module::FindFirstType() as it
sometimes didn't work. The issue was the SymbolFile plug-ins didn't do
any filtering of the matching types they produced, and they only looked
up types using the type basename. This means if you have two types with
the same basename, your type lookup can fail when only looking up a
single type. We would ask the Module::FindFirstType to lookup "Foo::Bar"
and it would ask the symbol file to find only 1 type matching the
basename "Bar", and then we would filter out any matches that didn't
match "Foo::Bar". So if the SymbolFile found "Foo::Bar" first, then it
would work, but if it found "Baz::Bar" first, it would return only that
type and it would be filtered out.
Discovering this issue lead me to think of the patch Alex Langford did a
few months ago that was done for finding functions, where he allowed
SymbolFile objects to make sure something fully matched before parsing
the debug information into an AST type and other LLDB types. So this
patch aimed to allow type lookups to also be much more efficient.
As LLDB has been developed over the years, we added more ways to to type
lookups. These functions have lots of arguments. This patch aims to make
one API that needs to be implemented that serves all previous lookups:
- Find a single type
- Find all types
- Find types in a namespace
This patch introduces a `TypeQuery` class that contains all of the state
needed to perform the lookup which is powerful enough to perform all of
the type searches that used to be in our API. It contain a vector of
CompilerContext objects that can fully or partially specify the lookup
that needs to take place.
If you just want to lookup all types with a matching basename,
regardless of the containing context, you can specify just a single
CompilerContext entry that has a name and a CompilerContextKind mask of
CompilerContextKind::AnyType.
Or you can fully specify the exact context to use when doing lookups
like: CompilerContextKind::Namespace "std"
CompilerContextKind::Class "foo"
CompilerContextKind::Typedef "size_type"
This change expands on the clang modules code that already used a
vector<CompilerContext> items, but it modifies it to work with
expression type lookups which have contexts, or user lookups where users
query for types. The clang modules type lookup is still an option that
can be enabled on the `TypeQuery` objects.
This mirrors the most recent addition of type lookups that took a
vector<CompilerContext> that allowed lookups to happen for the
expression parser in certain places.
Prior to this we had the following APIs in Module:
```
void
Module::FindTypes(ConstString type_name, bool exact_match, size_t max_matches,
llvm::DenseSet<lldb_private::SymbolFile *> &searched_symbol_files,
TypeList &types);
void
Module::FindTypes(llvm::ArrayRef<CompilerContext> pattern, LanguageSet languages,
llvm::DenseSet<lldb_private::SymbolFile *> &searched_symbol_files,
TypeMap &types);
void Module::FindTypesInNamespace(ConstString type_name,
const CompilerDeclContext &parent_decl_ctx,
size_t max_matches, TypeList &type_list);
```
The new Module API is much simpler. It gets rid of all three above
functions and replaces them with:
```
void FindTypes(const TypeQuery &query, TypeResults &results);
```
The `TypeQuery` class contains all of the needed settings:
- The vector<CompilerContext> that allow efficient lookups in the symbol
file classes since they can look at basename matches only realize fully
matching types. Before this any basename that matched was fully realized
only to be removed later by code outside of the SymbolFile layer which
could cause many types to be realized when they didn't need to.
- If the lookup is exact or not. If not exact, then the compiler context
must match the bottom most items that match the compiler context,
otherwise it must match exactly
- If the compiler context match is for clang modules or not. Clang
modules matches include a Module compiler context kind that allows types
to be matched only from certain modules and these matches are not needed
when d oing user type lookups.
- An optional list of languages to use to limit the search to only
certain languages
The `TypeResults` object contains all state required to do the lookup
and store the results:
- The max number of matches
- The set of SymbolFile objects that have already been searched
- The matching type list for any matches that are found
The benefits of this approach are:
- Simpler API, and only one API to implement in SymbolFile classes
- Replaces the FindTypesInNamespace that used a CompilerDeclContext as a
way to limit the search, but this only worked if the TypeSystem matched
the current symbol file's type system, so you couldn't use it to lookup
a type in another module
- Fixes a serious bug in our FindFirstType functions where if we were
searching for "foo::bar", and we found a "baz::bar" first, the basename
would match and we would only fetch 1 type using the basename, only to
drop it from the matching list and returning no results