clang 14 removed -gz=zlib-gnu support and ld.lld/llvm-objcopy removed zlib-gnu
support recently. Remove lldb support by migrating away from
llvm::object::Decompressor::isCompressedELFSection.
The API has another user llvm-dwp, so it is not removed in this patch.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D129724
It's more natural to use uint8_t * (std::byte needs C++17 and llvm has
too much uint8_t *) and most callers use uint8_t * instead of char *.
The functions are recently moved into `llvm::compression::zlib::`, so
downstream projects need to make adaption anyway.
When an object file returns multiple architectures, it is treated
as a fat binary - which really isn't the case of i386 vs i686 where
the object file actually has one architecture.
This allows getting rid of hardcoded architecture triples in
PlatformWindows.
The parallel i386 and i686 architecture strings stem from
5e6f45201f / D7120 and
ad587ae4ca / D4658.
Differential Revision: https://reviews.llvm.org/D128617
As it exists today, Host::SystemLog is used exclusively for error
reporting. With the introduction of diagnostic events, we have a better
way of reporting those. Instead of printing directly to stderr, these
messages now get printed to the debugger's error stream (when using the
default event handler). Alternatively, if someone is listening for these
events, they can decide how to display them, for example in the context
of an IDE such as Xcode.
This change also means we no longer write these messages to the system
log on Darwin. As far as I know, nobody is relying on this, but I think
this is something we could add to the diagnostic event mechanism.
Differential revision: https://reviews.llvm.org/D128480
The setting `plugin.object-file.pe-coff.module-abi` is a string-to-enum
map that allows specifying an ABI to a module name. For example:
ucrtbase.dll=msvc
libstdc++-6.dll=gnu
This allows for debugging a process which mixes both modules built using
the MSVC ABI and modules built using the MinGW ABI.
Depends on D127048
Reviewed By: DavidSpickett
Differential Revision: https://reviews.llvm.org/D127234
PE/COFF can use either MSVC or GNU (MinGW) ABI for C++ code, however
LLDB had defaulted to MSVC implicitly with no way to override it. This
causes issues when debugging modules built with the GNU ABI, sometimes
even crashes.
This changes the PE/COFF plugin to set the module triple according to
the default target triple used to build LLDB. If the default target
triple is Windows and a valid environment is specified, then this
environment will be used for the module spec. This not only works for
MSVC and GNU, but also other environments.
A new setting, `plugin.object-file.pe-coff.abi`, has been added to
allow overriding this default ABI.
* Fixes https://github.com/llvm/llvm-project/issues/50775
* Fixes https://github.com/mstorsjo/llvm-mingw/issues/226
* Fixes https://github.com/mstorsjo/llvm-mingw/issues/282
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D127048
The specification of gnu-debuglink can be found at:
https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html
The file CRC or the CRC value from the .gnu_debuglink section is now
used to calculate the module UUID as a fallback, to allow verifying that
the debug object does match the executable. Note that if a CodeView
build id exists, it still takes precedence. This works even for MinGW
builds because LLD writes a synthetic CodeView build id which does not
get stripped from the debug object.
The `Minidump/Windows/find-module` test also needs a fix by adding a
CodeView record to the exe to match the one in the minidump, otherwise
it fails due to the new UUID calculated from the file CRC.
Fixes https://github.com/llvm/llvm-project/issues/54344
Reviewed By: DavidSpickett
Differential Revision: https://reviews.llvm.org/D126367
There are 3 places where we were using WASM_SEC_TAG as the "last" known
section type, which requires updating (or leaves a bug) when a new known
section type is added. Instead add a "last type" to the enum for this
purpose.
Differential Revision: https://reviews.llvm.org/D127164
Currently, ppc64le and ppc64 (defaulting to big endian) have the same
descriptor, thus the linear scan always return ppc64le. Handle that through
subtype.
This is a recommit of f114f00948 with a new test
setup that doesn't involves (unsupported) corefiles.
Differential Revision: https://reviews.llvm.org/D124760
This reverts commit f114f00948.
Due to hitting an assert on our lldb bots:
https://lab.llvm.org/buildbot/#/builders/96/builds/22715
../llvm-project/lldb/source/Plugins/Process/elf-core/ThreadElfCore.cpp:170:
virtual lldb::RegisterContextSP ThreadElfCore::CreateRegisterContextForFrame(
lldb_private::StackFrame *): Assertion `false && "Architecture or OS not supported"' failed.
Currently, ppc64le and ppc64 (defaulting to big endian) have the same
descriptor, thus the linear scan always return ppc64le. Handle that through
subtype.
Differential Revision: https://reviews.llvm.org/D124760
Currently, all data buffers are assumed to be writable. This is a
problem on macOS where it's not allowed to load unsigned binaries in
memory as writable. To be more precise, MAP_RESILIENT_CODESIGN and
MAP_RESILIENT_MEDIA need to be set for mapped (unsigned) binaries on our
platform.
Binaries are mapped through FileSystem::CreateDataBuffer which returns a
DataBufferLLVM. The latter is backed by a llvm::WritableMemoryBuffer
because every DataBuffer in LLDB is considered to be writable. In order
to use a read-only llvm::MemoryBuffer I had to split our abstraction
around it.
This patch distinguishes between a DataBuffer (read-only) and
WritableDataBuffer (read-write) and updates LLDB to use the appropriate
one.
rdar://74890607
Differential revision: https://reviews.llvm.org/D122856
The current design allows that the object file contents could be mapped
by one object file plugin and then used by another. Presumably the idea
here was to avoid mapping the same file twice.
This becomes an issue when one object file plugin wants to map the file
differently from the others. For example, ObjectFileELF needs to map its
memory as writable while others likeObjectFileMachO needs it to be
mapped read-only.
This patch prevents plugins from changing the buffer by passing them is
by value rather than by reference.
Differential revision: https://reviews.llvm.org/D122944
The current code increment the indirect symbol offset with the LINKEDIT
slide every time ObjectFileMachO::ParseSymtab is called.
This resulted in a crash when calling add-dsym which causes us to
potentially re-parse the original binary's symbol table. There's a
separate question about whether we should re-parse the symbol table at
all which was fixed by D114288. Regardless, copying the load command is
cheap enough that this is still the right thing to do.
rdar://72337717
Differential revision: https://reviews.llvm.org/D122349
Fix the log and progress report message for in-memory binaries. If
there's no object file, use the name from the Module. With this patch we
correctly show the library name when attaching to a remote process
without an expanded shared cache.
Differential revision: https://reviews.llvm.org/D122177
Applied modernize-use-default-member-init clang-tidy check over LLDB.
It appears in many files we had already switched to in class member init but
never updated the constructors to reflect that. This check is already present in
the lldb/.clang-tidy config.
Differential Revision: https://reviews.llvm.org/D121481
Add support to inspect the ELF headers for RISCV targets to determine if
RVC or RVE are enabled and the floating point support to enable. As per
the RISCV specification, d implies f, q implies d implies f, which gives
us the cascading effect that is used to enable the features when setting
up the disassembler. With this change, it is now possible to attach the
debugger to a remote process and be able to disassemble the instruction
stream.
~~~
$ bin/lldb tmp/reduced
(lldb) target create "reduced"
Current executable set to '/tmp/reduced' (riscv64).
(lldb) gdb-remote localhost:1234
(lldb) Process 5737 stopped
* thread #1, name = 'reduced', stop reason = signal SIGTRAP
frame #0: 0x0000003ff7fe1b20
-> 0x3ff7fe1b20: mv a0, sp
0x3ff7fe1b22: jal 1936
0x3ff7fe1b26: mv s0, a0
0x3ff7fe1b28: auipc a0, 27
~~~
Reflow the textual comment which preserves formatted output from
tooling. This makes the content legible again after the lldb source
code was reformatted with automated tooling.
ObjectFileMachO, for a couple of special binaries at the initial
launch, needs to find segment load addresses before the Target's
SectionLoadList has been initialized. The calculation to find
the first segment, which is at the same address as the mach header,
was not correct if the binary was in the Darwin shared cache.
Update the logic to handle that case.
Differential Revision: https://reviews.llvm.org/D119602
rdar://88802629
Most of our code was including Log.h even though that is not where the
"lldb" log channel is defined (Log.h defines the generic logging
infrastructure). This worked because Log.h included Logging.h, even
though it should.
After the recent refactor, it became impossible the two files include
each other in this direction (the opposite inclusion is needed), so this
patch removes the workaround that was put in place and cleans up all
files to include the right thing. It also renames the file to LLDBLog to
better reflect its purpose.
This reverts commit ef82063207.
- It conflicts with the existing llvm::size in STLExtras, which will now
never be called.
- Calling it without llvm:: breaks C++17 compat
This is a re-submission of 24d2405588
without the hunks in HostNativeThreadBase.{h,cpp}, which break builds
on Windows.
Identified with modernize-use-nullptr.
This reverts commit 913457acf0.
It again broke builds on Windows:
lldb/source/Host/common/HostNativeThreadBase.cpp(37,14): error:
assigning to 'lldb::thread_result_t' (aka 'unsigned int') from
incompatible type 'std::nullptr_t'
This is a re-submission of 24d2405588
without the hunk in HostNativeThreadBase.h, which breaks builds on
Windows.
Identified with modernize-use-nullptr.
This reverts commit 24d2405588.
Breaks building on Windows:
../../lldb/include\lldb/Host/HostNativeThreadBase.h(49,36): error:
cannot initialize a member subobject of type 'lldb::thread_result_t'
(aka 'unsigned int') with an rvalue of type 'std::nullptr_t'
lldb::thread_result_t m_result = nullptr;
^~~~~~~
1 error generated.
Version 2 of 'main bin spec' LC_NOTE allows for the specification
of a slide of where the binary is loaded in the corefile virtual
address space. It also adds a (currently unused) platform field
for the main binary.
Some corefile creators will only have a UUID and an offset to be
applied to the binary.
Changed TestFirmwareCorefiles.py to test this new form of
'main bin spec' with a slide, and also to run on both x86_64
and arm64 macOS systems.
Differential Revision: https://reviews.llvm.org/D116094
rdar://85938455
Add lldb support for a Mach-O "load binary" LC_NOTE which provides
a UUID, load address/slide, and possibly a name of a binary that
should be loaded when examining the core.
struct load_binary
{
uint32_t version; // currently 1
uuid_t uuid; // all zeroes if uuid not specified
uint64_t load_address; // virtual address where the macho is loaded, UINT64_MAX if unavail
uint64_t slide; // slide to be applied to file address to get load address, 0 if unavail
char name_cstring[]; // must be nul-byte terminated c-string, '\0' alone if name unavail
} __attribute__((packed));
Differential Revision: https://reviews.llvm.org/D115494
rdar://85069250
With arm64e ARMv8.3 pointer authentication, lldb needs to know how
many bits are used for addressing and how many are used for pointer
auth signing. This should be determined dynamically from the inferior
system / corefile, but there are some workflows where it still isn't
recorded and we fall back on a default value that is correct on some
Darwin environments.
This patch also explicitly sets the vendor of mach-o binaries to
Apple, so we select an Apple ABI instead of a random other ABI.
It adds a function pointer formatter for systems where pointer
authentication is in use, and we can strip the ptrauth bits off
of the function pointer address and get a different value that
points to an actual symbol.
Differential Revision: https://reviews.llvm.org/D115431
rdar://84644661