bufferization.writable is used in most cases instead. All remaining test cases are updated. Some code that is no longer needed is deleted.
Differential Revision: https://reviews.llvm.org/D129739
The `unknownTypeConversion` bufferization option (enum) is now a type converter function option. Some logic of `getMemRefType` is now handled by that function.
This change makes type conversion more controllable. Previously, there were only two options when generating memref types for non-bufferizable ops: Static identity layout or fully dynamic layout. With this change, users of One-Shot Bufferize can provide a function with custom logic.
Differential Revision: https://reviews.llvm.org/D129273
The result shape of a rank-reducing subview cannot be inferred in the general case. Just the result rank is not enough. The only thing that we can infer is the layout map.
This change also improves the bufferization patterns of tensor.extract_slice and tensor.insert_slice to fully support rank-reducing operations.
Differential Revision: https://reviews.llvm.org/D129144
This change updates all remaining bufferization patterns (except for scf.while) and the remaining bufferization infrastructure to infer the memory space whenever possible instead of falling back to "0". (If a default memory space is set in the bufferization options, we still fall back to that value if the memory space could not be inferred.)
Differential Revision: https://reviews.llvm.org/D128423
This is useful because the result type of an op can sometimes be inferred from its body (e.g., `scf.if`). This will be utilized in subsequent changes.
Also introduces a new `getBufferType` interface method on BufferizableOpInterface. This method is useful for computing a bufferized block argument type with respect to OpOperand types of the parent op.
Differential Revision: https://reviews.llvm.org/D128420
This attribute is currently supported on AllocTensorOp only. Future changes will add support to other ops. Furthermore, the memory space is not propagated properly in all bufferization patterns and some of the core bufferization infrastructure. This will be addressed in a subsequent change.
Differential Revision: https://reviews.llvm.org/D128274
All bufferizable ops that bufferize to an allocation receive a `bufferization.escape` attribute during TensorCopyInsertion.
Differential Revision: https://reviews.llvm.org/D128137
With the recent refactorings, this class is no longer needed. We can use BufferizationOptions in all places were BufferizationState was used.
Differential Revision: https://reviews.llvm.org/D127653
This change changes the bufferization so that it utilizes the new TensorCopyInsertion pass. One-Shot Bufferize no longer calls the One-Shot Analysis. Instead, it relies on the TensorCopyInsertion pass to make the entire IR fully inplacable. The `bufferize` implementations of all ops are simplified; they no longer have to account for out-of-place bufferization decisions. These were already materialized in the IR in the form of `bufferization.alloc_tensor` ops during the TensorCopyInsertion pass.
Differential Revision: https://reviews.llvm.org/D127652
If `create-deallocs=0`, mark all bufferization.alloc_tensor ops as escaping. (Unless they already have an `escape` attribute.) In the absence of analysis information, check SSA use-def chains to see if the value may be yielded.
Differential Revision: https://reviews.llvm.org/D127302
Bufferization of the func dialect must go through `OneShotModuleBufferize`. With this change, the analysis interface methods of the BufferizableOpInterface of func dialect ops can be used together with the normal `OneShotBufferize`. (In the absence of analysis information, they will return conservative results.)
Differential Revision: https://reviews.llvm.org/D127299
The TensorCopyInsertion pass resolves out-of-place bufferization decisions by inserting explicit `bufferization.alloc_tensor` ops. This change moves that functionality into a new BufferizableOpInterface method, so that it can be overridden by op implementations. Some op bufferizations must insert additional `alloc_tensor` ops to make sure that certain aliasing invariants are not violated (e.g., scf::ForOp). This will be addressed in a subsequent change.
Differential Revision: https://reviews.llvm.org/D126817
This pass runs the One-Shot Analysis to find out which tensor OpOperands must bufferize out-of-place. It then rewrites those tensor OpOperands to explicit allocations with a copy in the form of `bufferization.alloc_tensor`. The resulting IR can then be bufferized without having to care about read-after-write conflicts.
This change makes it possible to connect One-Shot Analysis to other bufferizations such as the sparse compiler.
Differential Revision: https://reviews.llvm.org/D126573
This simplifies the bufferization itself and is in preparation of connecting with the sparse compiler.
Differential Revision: https://reviews.llvm.org/D126814
Users should explicitly run `-buffer-results-to-out-params` instead.
The purpose of this change is to remove `finalizeBuffers`, which made it difficult to extend the bufferization to custom buffer types.
Differential Revision: https://reviews.llvm.org/D126253
The buffer deallocation pass must now be run explicitly when `allow-return-alloc` is set.
This results in a few extra buffer copies in unoptimized test cases. The proper way to avoid such copies is to relax the OpOperand/OpResult aliasing contract on ops such as scf.for. Some of these copies can also be avoided by improving the buffer deallocation pass.
Differential Revision: https://reviews.llvm.org/D126252
Find writability conflicts (writes to buffers that are not allowed to be written to) by checking SSA use-def chains. This is better than the current writability analysis, which is too conservative and finds false positives.
Differential Revision: https://reviews.llvm.org/D127256
Now that analysis and bufferization are better separated, post-analysis steps are no longer needed. Users can directly interleave analysis and bufferization as needed.
Differential Revision: https://reviews.llvm.org/D126571
Also fixes integration of the pass into One-Shot Bufferize and adds additional test cases.
BufferResultsToOutParams can be used with "identity-layout-map" and "fully-dynamic-layout-map". "infer-layout-map" is not supported.
Differential Revision: https://reviews.llvm.org/D125636
No longer pass static dim sizes as an attribute. This was redundant and required extra checks in the verifier. This change also makes the op symmetrical to memref::AllocOp.
Differential Revision: https://reviews.llvm.org/D126178
This change adds a new op `alloc_tensor` to the bufferization dialect. During bufferization, this op is always lowered to a buffer allocation (unless it is "eliminated" by a pre-processing pass). It is useful to have such an op in tensor land, because it allows users to model tensor SSA use-def chains (which drive bufferization decisions) and because tensor SSA use-def chains can be analyzed by One-Shot Bufferize, while memref values cannot.
This change also replaces all uses of linalg.init_tensor in bufferization-related code with bufferization.alloc_tensor.
linalg.init_tensor and bufferization.alloc_tensor are similar, but the purpose of the former one is just to carry a shape. It does not indicate a memory allocation.
linalg.init_tensor is not suitable for modelling SSA use-def chains for bufferization purposes, because linalg.init_tensor is marked as not having side effects (in contrast to alloc_tensor). As such, it is legal to move linalg.init_tensor ops around/CSE them/etc. This is not desirable for alloc_tensor; it represents an explicit buffer allocation while still in tensor land and such allocations should not suddenly disappear or get moved around when running the canonicalizer/CSE/etc.
BEGIN_PUBLIC
No public commit message needed for presubmit.
END_PUBLIC
Differential Revision: https://reviews.llvm.org/D126003