Replace iterators of the outermost loop with region arguments of the innermost
one. The changes avoid later `bufferization` passes to insert allocation within
the body of the innermost loop.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D130083
Replace iterators of the outermost loop with region arguments of the innermost
one. The changes avoid later `bufferization` passes to insert allocation within
the body of the innermost loop.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D130083
This is moslty NFC and will allow tensor.parallel_insert_slice to gain
rank-reducing semantics by reusing the vast majority of the tensor.insert_slice impl.
Depends on D128857
Differential Revision: https://reviews.llvm.org/D128920
This allows purging references of scf.ForeachThreadOp and scf.PerformConcurrentlyOp from
ParallelInsertSliceOp.
This will allowmoving the op closer to tensor::InsertSliceOp with which it should share much more
code.
In the future, the decoupling will also allow extending the type of ops that can be used in the
parallel combinator as well as semantics related to multiple concurrent inserts to the same
result.
Differential Revision: https://reviews.llvm.org/D128857
This was previous implemented as part of the BufferizableOpInterface of ForEachThreadOp. Moving the implementation to ParallelInsertSliceOp to be consistent with the remaining ops and to have a nice example op that can serve as a blueprint for other ops.
Differential Revision: https://reviews.llvm.org/D128666
This change updates all remaining bufferization patterns (except for scf.while) and the remaining bufferization infrastructure to infer the memory space whenever possible instead of falling back to "0". (If a default memory space is set in the bufferization options, we still fall back to that value if the memory space could not be inferred.)
Differential Revision: https://reviews.llvm.org/D128423
Add a failure return value and bufferization options argument. This is to keep a subsequent change smaller.
Differential Revision: https://reviews.llvm.org/D128278
An optional thread_dim_mapping index array attribute specifies for each
virtual thread dimension, how it remaps 1-1 to a set of concrete processing
element resources (e.g. a CUDA grid dimension or a level of concrete nested
async parallelism). At this time, the specification is backend-dependent and
is not verified by the op, beyond being an index array attribute.
It is the reponsibility of the lowering to interpret the index array in the
context of the concrete target the op is lowered to, or to ignore it when
the specification is ill-formed or unsupported for a particular target.
Differential Revision: https://reviews.llvm.org/D128633
This allows for better type inference during bufferization and is in preparation of supporting memory spaces.
Differential Revision: https://reviews.llvm.org/D128422
This allows for better type inference during bufferization and is in preparation of supporting memory spaces.
Differential Revision: https://reviews.llvm.org/D128581
This allows for better type inference during bufferization and is in preparation of supporting memory spaces.
Differential Revision: https://reviews.llvm.org/D128580
This is useful because the result type of an op can sometimes be inferred from its body (e.g., `scf.if`). This will be utilized in subsequent changes.
Also introduces a new `getBufferType` interface method on BufferizableOpInterface. This method is useful for computing a bufferized block argument type with respect to OpOperand types of the parent op.
Differential Revision: https://reviews.llvm.org/D128420
Seems to have been an accident of history and none of these had any reason to be restricted to FuncOp.
Differential Revision: https://reviews.llvm.org/D128614
All bufferizable ops that bufferize to an allocation receive a `bufferization.escape` attribute during TensorCopyInsertion.
Differential Revision: https://reviews.llvm.org/D128137
This patch implements tile and fuse transformation for ops that
implement the tiling interface. To do so,
- `TilingInterface` needs a new method that generates a tiled
implementation of the operation based on the tile of the result
needed.
- A pattern is added that replaces a `tensor.extract_slice` whose
source is defined by an operation that implements the
`TilingInterface` with a tiled implementation that produces the
extracted slice in-place (using the method added to
`TilingInterface`).
- A pattern is added that takes a sequence of operations that
implement the `TilingInterface` (for now `LinalgOp`s), tiles the
consumer, and greedily fuses its producers iteratively.
Differential Revision: https://reviews.llvm.org/D127809
This patch implements tile and fuse transformation for ops that
implement the tiling interface. To do so,
- `TilingInterface` needs a new method that generates a tiled
implementation of the operation based on the tile of the result
needed.
- A pattern is added that replaces a `tensor.extract_slice` whose
source is defined by an operation that implements the
`TilingInterface` with a tiled implementation that produces the
extracted slice in-place (using the method added to
`TilingInterface`).
- A pattern is added that takes a sequence of operations that
implement the `TilingInterface` (for now `LinalgOp`s), tiles the
consumer, and greedily fuses its producers iteratively.
Differential Revision: https://reviews.llvm.org/D127809
This revision adds the necessary plumbing for canonicalizing scf::ForeachThread with the
`AffineOpSCFCanonicalizationPattern`.
In the process the `loopMatcher` helper is updated to take OpFoldResult instead of just values.
This allows composing various scenarios without the need for an artificial builder.
Differential Revision: https://reviews.llvm.org/D128244
This aligns the SCF dialect file layout with the majority of the dialects.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D128049
Follow up from flipping dialects to both, flip accessor used to prefixed
variant ahead to flipping from _Both to _Prefixed. This just flips to
the accessors introduced in the preceding change which are just prefixed
forms of the existing accessor changed from.
Mechanical change using helper script
https://github.com/jpienaar/llvm-project/blob/main/clang-tools-extra/clang-tidy/misc/AddGetterCheck.cpp and clang-format.
With the recent refactorings, this class is no longer needed. We can use BufferizationOptions in all places were BufferizationState was used.
Differential Revision: https://reviews.llvm.org/D127653
This change changes the bufferization so that it utilizes the new TensorCopyInsertion pass. One-Shot Bufferize no longer calls the One-Shot Analysis. Instead, it relies on the TensorCopyInsertion pass to make the entire IR fully inplacable. The `bufferize` implementations of all ops are simplified; they no longer have to account for out-of-place bufferization decisions. These were already materialized in the IR in the form of `bufferization.alloc_tensor` ops during the TensorCopyInsertion pass.
Differential Revision: https://reviews.llvm.org/D127652
scf::ForOp and scf::WhileOp must insert buffer copies not only for out-of-place bufferizations, but also to enforce additional invariants wrt. to buffer aliasing behavior. This is currently happening in the respective `bufferize` methods. With this change, the tensor copy insertion pass will also enforce these invariants by inserting copies. The `bufferize` methods can then be simplified and made independent of the `AnalysisState` data structure in a subsequent change.
Differential Revision: https://reviews.llvm.org/D126822
This patch adds support for tiling operations that implement the
TilingInterface.
- It separates the loop constructs that are used to iterate over tile
from the implementation of the tiling itself. For example, the use
of destructive updates is more related to use of scf.for for
iterating over tiles that are tensors.
- To test the transformation, TilingInterface is implemented for
LinalgOps. The separation of the looping constructs used from the
implementation of tile code generation greatly simplifies the
latter.
- The implementation of TilingInterface for LinalgOp is kept as an
external model for now till this approach can be fully flushed out
to replace the existing tiling + fusion approaches in Linalg.
Differential Revision: https://reviews.llvm.org/D127133
Introduce transform ops for "for" loops, in particular for peeling, software
pipelining and unrolling, along with a couple of "IR navigation" ops. These ops
are intended to be generalized to different kinds of loops when possible and
therefore use the "loop" prefix. They currently live in the SCF dialect as
there is no clear place to put transform ops that may span across several
dialects, this decision is postponed until the ops actually need to handle
non-SCF loops.
Additionally refactor some common utilities for transform ops into trait or
interface methods, and change the loop pipelining to be a returning pattern.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D127300
`scf.foreach_thread` results alias with the underlying `scf.foreach_thread.parallel_insert_slice` destination operands
and they bufferize to equivalent buffers in the absence of other conflicts.
`scf.foreach_thread.parallel_insert_slice` conflict detection is similar to `tensor.insert_slice` conflict detection.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D126769
Add an option to predicate the epilogue within the kernel instead of
peeling the epilogue. This is a useful option to prevent generating
large amount of code for deep pipeline. This currently require a user
lamdba to implement operation predication.
Differential Revision: https://reviews.llvm.org/D126753
These attributes can carry useful information, e.g., pipelines
might use them to organize and chain patterns.
Reviewed By: hanchung
Differential Revision: https://reviews.llvm.org/D126320
Before this fix, the bufferization implementation made the incorrect assumption that the values yielded from the "before" region must match with the values yielded from the "after" region.
Differential Revision: https://reviews.llvm.org/D125835
Instead of recomputing memref types from tensor types, try to infer them when possible. This results in more precise layout maps.
Differential Revision: https://reviews.llvm.org/D125614
This follows the same implementation strategy as scf::ForOp and common functionality is extracted into helper functions.
This implementation works well in cases where each yielded value (from either body/condition region) is equivalent to the corresponding bbArg of the parent block. In that case, each OpResult of the loop may be aliasing with the corresponding OpOperand of the loop (and with no other OpOperand).
In the absence of said equivalence relationship, new buffer copies must be inserted, so that the aliasing OpOperand/OpResult contract of scf::WhileOp is honored. In essence, by yielding a newly allocated buffer, we can enforce the specified may-alias relationship. (Newly allocated buffers cannot alias with any OpOperands of the loop.)
Differential Revision: https://reviews.llvm.org/D124929
The previous error message was technically incorrect. We do not compare equivalence of YieldOp operands and ForOp operands.
Differential Revision: https://reviews.llvm.org/D124934