Integer range inference has been swapped to the new framework. The integer value range lattices automatically updates the corresponding constant value on update.
Depends on D127173
Reviewed By: krzysz00, rriddle
Differential Revision: https://reviews.llvm.org/D128866
This patch introduces a (forward) sparse data-flow analysis implemented with the data-flow analysis framework. The analysis interacts with liveness information that can be provided by dead-code analysis to be conditional. This patch re-implements SCCP using dead-code analysis and (conditional) constant propagation analyses.
Depends on D127064
Reviewed By: rriddle, phisiart
Differential Revision: https://reviews.llvm.org/D127139
Operand's defining op may not be valid for adding to the worklist under
stict mode
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D127180
The constructor already supports passing an ostream as argument,
so let's make the create function support it too.
Differential Revision: https://reviews.llvm.org/D127449
In strict mode, only the new inserted operation is allowed to add to the
worklist. Before this change, it would add the users of a replaced op
and it didn't check if the users are allowed to be pushed into the
worklist
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D126899
The previous fix from af371f9f98 only applied when using a bottom-up
traversal. The change here applies the constant preprocessing logic to the
top-down case as well. This resolves the issue with the canonicalizer pass still
reordering constants, since it uses a top-down traversal by default.
Fixes#51892
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D125623
The canonicalize command-line options currently have no effect, as the pass is
reading the pass options in its constructor, before they're actually
initialized. This results in the default values of the options always being used.
The change here moves the initialization of the `GreedyRewriteConfig` out of the
constructor, so that it runs after the pass options have been parsed.
Fixes#55466
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D125621
This patch adds a topological sort utility and pass. A topological sort reorders
the operations in a block without SSA dominance such that, as much as possible,
users of values come after their producers.
The utility function sorts topologically the operation range in a given block
with an optional user-provided callback that can be used to virtually break cycles.
The toposort pass itself recursively sorts graph regions under the target op.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D125063
This commit refactors the current pass manager support to allow for
operation agnostic pass managers. This allows for a series of passes
to be executed on any viable pass manager root operation, instead
of one specific operation type. Op-agnostic/generic pass managers
only allow for adding op-agnostic passes.
These types of pass managers are extremely useful when constructing
pass pipelines that can apply to many different types of operations,
e.g., the default inliner simplification pipeline. With the advent of
interface/trait passes, this support can be used to define FunctionOpInterface
pass managers, or other pass managers that effectively operate on
specific interfaces/traits/etc (see #52916 for an example).
Differential Revision: https://reviews.llvm.org/D123536
Previously, checking that a fix point is reached was counted as a full
iteration. As this "iteration" never changes the IR, this seems counter-
intuitive.
Differential Revision: https://reviews.llvm.org/D123641
This patch revamps the BranchOpInterface a bit and allows a proper implementation of what was previously `getMutableSuccessorOperands` for operations, which internally produce arguments to some of the block arguments. A motivating example for this would be an invoke op with a error handling path:
```
invoke %function(%0)
label ^success ^error(%1 : i32)
^error(%e: !error, %arg0 : i32):
...
```
The advantages of this are that any users of `BranchOpInterface` can still argue over remaining block argument operands (such as `%1` in the example above), as well as make use of the modifying capabilities to add more operands, erase an operand etc.
The way this patch implements that functionality is via a new class called `SuccessorOperands`, which is now returned by `getSuccessorOperands`. It basically contains an `unsigned` denoting how many operator produced operands exist, as well as a `MutableOperandRange`, which are the usual forwarded operands we are used to. The produced operands are assumed to the first few block arguments, followed by the forwarded operands afterwards. The role of `SuccessorOperands` is to provide various utility functions to modify and query the successor arguments from a `BranchOpInterface`.
Differential Revision: https://reviews.llvm.org/D123062
Reland Note: Adds a fix to properly mark a commutative operation as folded if we change the order
of its operands. This was uncovered by the fact that we no longer re-process constants.
This avoids accidentally reversing the order of constants during successive
application, e.g. when running the canonicalizer. This helps reduce the number
of iterations, and also avoids unnecessary changes to input IR.
Fixes#51892
Differential Revision: https://reviews.llvm.org/D122692
This patch enhances the CSE pass to deal with simple cases of duplicated
operations with MemoryEffects.
It allows the CSE pass to remove safely duplicate operations with the
MemoryEffects::Read that have no other side-effecting operations in
between. Other MemoryEffects::Read operation are allowed.
The use case is pretty simple so far so we can build on top of it to add
more features.
This patch is also meant to avoid a dedicated CSE pass in FIR and was
brought together afetr discussion on https://reviews.llvm.org/D112711.
It does not currently cover the full range of use cases described in
https://reviews.llvm.org/D112711 but the idea is to gradually enhance
the MLIR CSE pass to handle common use cases that can be used by
other dialects.
This patch takes advantage of the new CSE capabilities in Fir.
Reviewed By: mehdi_amini, rriddle, schweitz
Differential Revision: https://reviews.llvm.org/D122801
This commit refactors the expected form of native constraint and rewrite
functions, and greatly reduces the necessary user complexity required when
defining a native function. Namely, this commit adds in automatic processing
of the necessary PDLValue glue code, and allows for users to define
constraint/rewrite functions using the C++ types that they actually want to
use.
As an example, lets see a simple example rewrite defined today:
```
static void rewriteFn(PatternRewriter &rewriter, PDLResultList &results,
ArrayRef<PDLValue> args) {
ValueRange operandValues = args[0].cast<ValueRange>();
TypeRange typeValues = args[1].cast<TypeRange>();
...
// Create an operation at some point and pass it back to PDL.
Operation *op = rewriter.create<SomeOp>(...);
results.push_back(op);
}
```
After this commit, that same rewrite could be defined as:
```
static Operation *rewriteFn(PatternRewriter &rewriter ValueRange operandValues,
TypeRange typeValues) {
...
// Create an operation at some point and pass it back to PDL.
return rewriter.create<SomeOp>(...);
}
```
Differential Revision: https://reviews.llvm.org/D122086
This significantly simplifies the boilerplate necessary for passes
to define nested pass pipelines.
Differential Revision: https://reviews.llvm.org/D122880
This reverts commit 59bbc7a085.
This exposes an issue breaking the contract of
`applyPatternsAndFoldGreedily` where we "converge" without applying
remaining patterns.
This avoids accidentally reversing the order of constants during successive
application, e.g. when running the canonicalizer. This helps reduce the number
of iterations, and also avoids unnecessary changes to input IR.
Fixes#51892
Differential Revision: https://reviews.llvm.org/D122692
(This was a TODO from the initial patch).
The control-flow sink utility accepts a callback that is used to sink an operation into a region.
The `moveIntoRegion` is called on the same operation and region that return true for `shouldMoveIntoRegion`.
The callback must preserve the dominance of the operation within the region. In the default control-flow
sink implementation, this is moving the operation to the start of the entry block.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D122445
- Adds default implementations of `isDefinedOutsideOfLoop` and `moveOutOfLoop` since 99% of all implementations of these functions were identical
- `moveOutOfLoop` takes one operation and doesn't return anything anymore. 100% of all implementations of this function would always return `success` and uses would either respond with a pass failure or an `llvm_unreachable`.
When the current implementation merges two blocks that have operands defined outside of their block respectively, it will merge these by adding a block argument in the resulting merged block and adding successor arguments to the predecessors.
There is a special case where this is incorrect however: If one of predecessors terminator produce the operand, inserting the block argument and updating the predecessor would lead to the terminator using its own result as successor argument.
IR Example:
```
%0 = "test.producing_br"()[^bb1, ^bb2] {
operand_segment_sizes = dense<0> : vector<2 x i32>
} : () -> i32
^bb1:
"test.br"(%0)[^bb4] : (i32) -> ()
```
where `^bb1` is then merged with another block would lead to:
```
%0 = "test.producing_br"(%0)[^bb1, ^bb2]
```
This patch fixes that issue during clustering by making sure that if the operand is from an outside block, that it is not produced by the terminator of a predecessor.
Differential Revision: https://reviews.llvm.org/D121988
This removes any potential confusion with the `getType` accessors
which correspond to SSA results of an operation, and makes it
clear what the intent is (i.e. to represent the type of the function).
Differential Revision: https://reviews.llvm.org/D121762
This commit moves FuncOp out of the builtin dialect, and into the Func
dialect. This move has been planned in some capacity from the moment
we made FuncOp an operation (years ago). This commit handles the
functional aspects of the move, but various aspects are left untouched
to ease migration: func::FuncOp is re-exported into mlir to reduce
the actual API churn, the assembly format still accepts the unqualified
`func`. These temporary measures will remain for a little while to
simplify migration before being removed.
Differential Revision: https://reviews.llvm.org/D121266
BuiltinOps.h
These includes are going to be removed from BuiltinOps.h in a followup
when FuncOp is moved out of the Builtin dialect. This commit
pre-emptively adds those includes to simplify the patch moving FuncOp.
During dialect conversion, target materialization is triggered to create
cast-like operations when a type mismatch occurs between the value that
replaces a rewritten operation and the type that another operations expects as
operands processed by the type conversion. First, a dummy cast is inserted to
make sure the pattern application can proceed. The decision to trigger the
user-provided materialization hook is taken later based on the result of the
dummy cast having uses. However, it only has uses if other patterns constructed
new operations using the casted value as operand. If existing (legal)
operations use the replaced value, they may have not been updated to use the
casted value yet. The conversion infra would then delete the dummy cast first,
and then would replace the uses with now-invalid (null in the bast case) value.
When deciding whether to trigger cast materialization, check for liveness the
uses not only of the casted value, but also of all the values that it replaces.
This was discovered in the finalizing bufferize pass that cleans up
mutually-cancelling casts without touching other operations. It is not
impossible that there are other scenarios where the dialect converison infra
could produce invalid operand uses because of dummy casts erased too eagerly.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D119937
This change exposes printer flags in AsmState and AsmStateImpl. All functions
receiving AsmState as a parameter now use the flags from the AsmState instead of
taking an additional OpPrintingFlags parameter.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D119870
Simple pass that changes all symbols to private unless symbol is excluded (and
in which case there is no change to symbol's visibility).
Differential Revision: https://reviews.llvm.org/D118752
This has been a major TODO for a very long time, and is necessary for establishing a proper
dialect-free dependency layering for the Transforms library. Code was moved to effectively
two main locations:
* Affine/
There was quite a bit of affine dialect related code in Transforms/ do to historical reasons
(of a time way into MLIR's past). The following headers were moved to:
Transforms/LoopFusionUtils.h -> Dialect/Affine/LoopFusionUtils.h
Transforms/LoopUtils.h -> Dialect/Affine/LoopUtils.h
Transforms/Utils.h -> Dialect/Affine/Utils.h
The following transforms were also moved:
AffineLoopFusion, AffinePipelineDataTransfer, LoopCoalescing
* SCF/
Only one SCF pass was in Transforms/ (likely accidentally placed here): ParallelLoopCollapsing
The SCF specific utilities in LoopUtils have been moved to SCF/Utils.h
* Misc:
mlir::moveLoopInvariantCode was also moved to LoopLikeInterface.h given
that it is a simple utility defined in terms of LoopLikeOpInterface.
Differential Revision: https://reviews.llvm.org/D117848
Transforms/ should only contain transformations that are dialect-independent and
this pass interacts with MemRef operations (making it a better fit for living in that
dialect).
Differential Revision: https://reviews.llvm.org/D117841
Transforms/ should only contain dialect-independent transformations,
and these files are a much better fit for the bufferization dialect anyways.
Differential Revision: https://reviews.llvm.org/D117839