This operation is a NavigationOp that simplifies the writing of transform IR.
Since there is no way of refering to an interface by name, the current implementation uses
an EnumAttr and depends on the interfaces it supports.
In the future, it would be worthwhile to remove this dependence and generalize.
Differential Revision: https://reviews.llvm.org/D130267
bufferization.writable is used in most cases instead. All remaining test cases are updated. Some code that is no longer needed is deleted.
Differential Revision: https://reviews.llvm.org/D129739
This change updates all remaining bufferization patterns (except for scf.while) and the remaining bufferization infrastructure to infer the memory space whenever possible instead of falling back to "0". (If a default memory space is set in the bufferization options, we still fall back to that value if the memory space could not be inferred.)
Differential Revision: https://reviews.llvm.org/D128423
This allows for better type inference during bufferization and is in preparation of supporting memory spaces.
Differential Revision: https://reviews.llvm.org/D128581
This attribute is currently supported on AllocTensorOp only. Future changes will add support to other ops. Furthermore, the memory space is not propagated properly in all bufferization patterns and some of the core bufferization infrastructure. This will be addressed in a subsequent change.
Differential Revision: https://reviews.llvm.org/D128274
All bufferizable ops that bufferize to an allocation receive a `bufferization.escape` attribute during TensorCopyInsertion.
Differential Revision: https://reviews.llvm.org/D128137
This change changes the bufferization so that it utilizes the new TensorCopyInsertion pass. One-Shot Bufferize no longer calls the One-Shot Analysis. Instead, it relies on the TensorCopyInsertion pass to make the entire IR fully inplacable. The `bufferize` implementations of all ops are simplified; they no longer have to account for out-of-place bufferization decisions. These were already materialized in the IR in the form of `bufferization.alloc_tensor` ops during the TensorCopyInsertion pass.
Differential Revision: https://reviews.llvm.org/D127652
If `create-deallocs=0`, mark all bufferization.alloc_tensor ops as escaping. (Unless they already have an `escape` attribute.) In the absence of analysis information, check SSA use-def chains to see if the value may be yielded.
Differential Revision: https://reviews.llvm.org/D127302
There are various shortcuts in `BufferizationState::getBuffer` that avoid a buffer copy when we just need an allocation (and no initialization). This change adds those shortcuts to the TensorCopyInsertion pass, so that `getBuffer` can be simplified in a subsequent change.
Differential Revision: https://reviews.llvm.org/D126821
This pass runs the One-Shot Analysis to find out which tensor OpOperands must bufferize out-of-place. It then rewrites those tensor OpOperands to explicit allocations with a copy in the form of `bufferization.alloc_tensor`. The resulting IR can then be bufferized without having to care about read-after-write conflicts.
This change makes it possible to connect One-Shot Analysis to other bufferizations such as the sparse compiler.
Differential Revision: https://reviews.llvm.org/D126573
If `copy` is specified, the newly allocated buffer is initialized with the given contents. Also add an optional `escape` attribute to indicate whether the buffer of the tensor may be returned from the parent block (aka. "escape") after bufferization.
This change is in preparation of connecting One-Shot Bufferize to the sparse compiler.
Differential Revision: https://reviews.llvm.org/D126570
This simplifies the bufferization itself and is in preparation of connecting with the sparse compiler.
Differential Revision: https://reviews.llvm.org/D126814
Users should explicitly run `-buffer-results-to-out-params` instead.
The purpose of this change is to remove `finalizeBuffers`, which made it difficult to extend the bufferization to custom buffer types.
Differential Revision: https://reviews.llvm.org/D126253
The buffer deallocation pass must now be run explicitly when `allow-return-alloc` is set.
This results in a few extra buffer copies in unoptimized test cases. The proper way to avoid such copies is to relax the OpOperand/OpResult aliasing contract on ops such as scf.for. Some of these copies can also be avoided by improving the buffer deallocation pass.
Differential Revision: https://reviews.llvm.org/D126252
This commit allows for One-Shot Bufferize to be used through the transform dialect. No op handle is currently returned for the bufferized IR.
Differential Revision: https://reviews.llvm.org/D125098
Find writability conflicts (writes to buffers that are not allowed to be written to) by checking SSA use-def chains. This is better than the current writability analysis, which is too conservative and finds false positives.
Differential Revision: https://reviews.llvm.org/D127256
Also fixes integration of the pass into One-Shot Bufferize and adds additional test cases.
BufferResultsToOutParams can be used with "identity-layout-map" and "fully-dynamic-layout-map". "infer-layout-map" is not supported.
Differential Revision: https://reviews.llvm.org/D125636
No longer pass static dim sizes as an attribute. This was redundant and required extra checks in the verifier. This change also makes the op symmetrical to memref::AllocOp.
Differential Revision: https://reviews.llvm.org/D126178
This change adds a new op `alloc_tensor` to the bufferization dialect. During bufferization, this op is always lowered to a buffer allocation (unless it is "eliminated" by a pre-processing pass). It is useful to have such an op in tensor land, because it allows users to model tensor SSA use-def chains (which drive bufferization decisions) and because tensor SSA use-def chains can be analyzed by One-Shot Bufferize, while memref values cannot.
This change also replaces all uses of linalg.init_tensor in bufferization-related code with bufferization.alloc_tensor.
linalg.init_tensor and bufferization.alloc_tensor are similar, but the purpose of the former one is just to carry a shape. It does not indicate a memory allocation.
linalg.init_tensor is not suitable for modelling SSA use-def chains for bufferization purposes, because linalg.init_tensor is marked as not having side effects (in contrast to alloc_tensor). As such, it is legal to move linalg.init_tensor ops around/CSE them/etc. This is not desirable for alloc_tensor; it represents an explicit buffer allocation while still in tensor land and such allocations should not suddenly disappear or get moved around when running the canonicalizer/CSE/etc.
BEGIN_PUBLIC
No public commit message needed for presubmit.
END_PUBLIC
Differential Revision: https://reviews.llvm.org/D126003
This changes replaces the `fully-dynamic-layout-maps` options (which was badly named) with two new options:
* `unknown-type-conversion` controls the layout maps on buffer types for which no layout map can be inferred.
* `function-boundary-type-conversion` controls the layout maps on buffer types inside of function signatures.
Differential Revision: https://reviews.llvm.org/D125615
This change integrates the BufferResultsToOutParamsPass into One-Shot Module Bufferization. This improves memory management (deallocation) when buffers are returned from a function.
Note: This currently only works with statically-sized tensors. The generated code is not very efficient yet and there are opportunities for improvment (fewer copies). By default, this new functionality is deactivated.
Differential Revision: https://reviews.llvm.org/D125376
This was leftover from when the standard dialect was destroyed, and
when FuncOp moved to the func dialect. Now that these transitions
have settled a bit we can drop these.
Most updates were handled using a simple regex: replace `^( *)func` with `$1func.func`
Differential Revision: https://reviews.llvm.org/D124146
This follows the same implementation strategy as scf::ForOp and common functionality is extracted into helper functions.
This implementation works well in cases where each yielded value (from either body/condition region) is equivalent to the corresponding bbArg of the parent block. In that case, each OpResult of the loop may be aliasing with the corresponding OpOperand of the loop (and with no other OpOperand).
In the absence of said equivalence relationship, new buffer copies must be inserted, so that the aliasing OpOperand/OpResult contract of scf::WhileOp is honored. In essence, by yielding a newly allocated buffer, we can enforce the specified may-alias relationship. (Newly allocated buffers cannot alias with any OpOperands of the loop.)
Differential Revision: https://reviews.llvm.org/D124929
The names of the functions that are supposed to be exported do not match the implementations. This is due in part to cac7aabbd8.
This change makes the implementations and declarations match and adds a couple missing declarations.
The new names follow the pattern of the existing `verify` functions where the prefix is maintained as `_mlir_ciface_` but the suffix follows the new naming convention.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D124891
The previous error message was technically incorrect. We do not compare equivalence of YieldOp operands and ForOp operands.
Differential Revision: https://reviews.llvm.org/D124934
This commit relaxes the rules around ops that define a value but do not specify the tensor's contents. (The only such op at the moment is init_tensor.)
When such a tensor is written in a loop, it should not cause out-of-place bufferization.
Differential Revision: https://reviews.llvm.org/D124849
* Move Module Bufferization to the bufferization dialect. The implementation is split into `OneShotModuleBufferize.cpp` and `FuncBufferizableOpInterfaceImpl.cpp`, so that the external model implementation can be easily moved to the func dialect in the future.
* Split and clean up test cases. A few test cases are still remaining in Linalg and will be updated separately.
* `linalg.inplaceable` is renamed to `bufferization.writable` to accurately reflect its current usage.
* Attributes and their verifiers are moved from the Linalg dialect to the Bufferization dialect.
* Expand documentation.
* Add a new flag to One-Shot Bufferize to allow for function boundary bufferization.
Differential Revision: https://reviews.llvm.org/D122229
Add RegionBranchOpInterface on affine.for op so that transforms relying
on RegionBranchOpInterface can support affine.for. E.g.:
buffer-deallocation pass.
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D123568
Insert a cast if the two tensors with identical layout (that are passed to `arith.select`) have different layout maps after bufferization.
Differential Revision: https://reviews.llvm.org/D123321
New buffer allocations can now be returned/yielded from blocks with `allow-return-allocs`. One-Shot Bufferize deallocates all buffers at the end of the block. If this is not possible (because the buffer escapes the block), this is now done by the existing BufferDeallocation pass.
Differential Revision: https://reviews.llvm.org/D121527
Such IR is rejected by default, but can be allowed with `allow-return-memref`. In preparation of future refactorings, do not deallocate such buffers.
One-Shot Analysis now gathers information about yielded tensors, so that we know during the actual bufferization whether a newly allocated buffer should be deallocated again. (Otherwise, it will leak. This will be addressed in a subsequent commit that also makes `allow-return-memref` a non-experimental flag.)
As a cleanup, `allow-return-memref` is now part of OneShotBufferizationOptions. (It was previously ignored by AlwaysCopyBufferizationState.) Moreover, AlwaysCopyBufferizationState now asserts that `create-deallocs` is deactivated to prevent surprising behavior.
Differential Revision: https://reviews.llvm.org/D121521
This improves the modularity of the bufferization.
From now on, all ops that do not implement BufferizableOpInterface are considered hoisting barriers. Previously, all ops that do not implement the interface were not considered barriers and such ops had to be marked as barriers explicitly. This was unsafe because we could've hoisted across unknown ops where it was not safe to hoist.
As a side effect, this allows for cleaning up AffineBufferizableOpInterfaceImpl. This build unit no longer needed and can be deleted.
Differential Revision: https://reviews.llvm.org/D121519
Also add a TODO to switch to a custom walk instead of the GreedyPatternRewriter, which should be more efficient. (The bufferization pattern is guaranteed to apply only a single time for every op, so a simple walk should suffice.)
We currently specify a top-to-bottom walk order. This is important because other walk orders could introduce additional casts and/or buffer copies. These canonicalize away again, but it is more efficient to never generate them in the first place.
Note: A few of these canonicalizations are not yet implemented.
Differential Revision: https://reviews.llvm.org/D121518
The revision removes the linalg.fill operation and renames the OpDSL generated linalg.fill_tensor operation to replace it. After the change, all named structured operations are defined via OpDSL and there are no handwritten operations left.
A side-effect of the change is that the pretty printed form changes from:
```
%1 = linalg.fill(%cst, %0) : f32, tensor<?x?xf32> -> tensor<?x?xf32>
```
changes to
```
%1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<?x?xf32>) -> tensor<?x?xf32>
```
Additionally, the builder signature now takes input and output value ranges as it is the case for all other OpDSL operations:
```
rewriter.create<linalg::FillOp>(loc, val, output)
```
changes to
```
rewriter.create<linalg::FillOp>(loc, ValueRange{val}, ValueRange{output})
```
All other changes remain minimal. In particular, the canonicalization patterns are the same and the `value()`, `output()`, and `result()` methods are now implemented by the FillOpInterface.
Depends On D120726
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D120728
The related functionality is moved over to the bufferization dialect. Test cases are cleaned up a bit.
Differential Revision: https://reviews.llvm.org/D120191
This would create a double free when a memref is passed twice to the
same op. This wasn't a problem at the time the pass was written but is
common since the introduction of scf.while.
There's a latent non-determinism that's triggered by the test, but this
change is messy enough as-is so I'll leave that for later.
Differential Revision: https://reviews.llvm.org/D120044
The pass can currently not handle to_memref(to_tensor(x)) folding where a cast is necessary. This is required with the new unified bufferization. There is already a canonicalization pattern that handles such foldings and it should be used during this pass.
Differential Revision: https://reviews.llvm.org/D117988
The leading space that is always printed at the beginning of regions is not consistent with other parts of the printing API. Moreover, this leading space can lead to undesirable assembly formats:
```
attr-dict-with-keyword $region
```
Prints as:
```
// Two spaces between `}` and `{`
attributes {foo} { ... }
```
Moreover, the leading space results in the odd generic op format:
```
"test.op"() ( {...}) : () -> ()
```
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D117411