This patch fixes a problem introduced by clang change
https://reviews.llvm.org/D95617 and described by
https://bugs.llvm.org/show_bug.cgi?id=50076#c6, where inlined functions
omit unused parameters both in the stack trace and in `frame var`
command. With this patch, the parameters are listed correctly in the
stack trace and in `frame var` command.
Specifically, we parse formal parameters from the abstract version of
inlined functions and use those formal parameters if they are missing
from the concrete version.
Differential Revision: https://reviews.llvm.org/D110571
Add a new serial:// protocol along with SerialPort that provides a new
API to open serial ports. The URL consists of serial device path
followed by URL-style options, e.g.:
serial:///dev/ttyS0?baud=115200&parity=even
If no options are provided, the serial port is only set to raw mode
and the other attributes remain unchanged. Attributes provided via
options are modified to the specified values. Upon closing the serial
port, its original attributes are restored.
Differential Revision: https://reviews.llvm.org/D111355
gdbserver does not expose combined ymm* registers but rather XSAVE-style
split xmm* and ymm*h portions. Extend value_regs to support combining
multiple registers and use it to create user-friendly ymm* registers
that are combined from split xmm* and ymm*h portions.
Differential Revision: https://reviews.llvm.org/D108937
In macOS 12, dyld switched to using chained fixups. As a result, all symbols
are bound at launch and there are no lazy pointers any more. Since we wish to
import/dlopen() a dylib with missing symbols, we need to use a weak import.
This applies to all macOS 12-aligned OS releases, e.g. iOS 15, etc.
rdar://81295101
Differential Revision: https://reviews.llvm.org/D112034
We had two sets of build<flavour> methods, whose bodies were largely
identical. This makes any kind of modification in their vicinity
repetitive and error-prone.
Replace each set with a single method taking an optional debug_info
parameter.
Differential Revision: https://reviews.llvm.org/D111989
This adds the `target dump typesystem'`command which dumps the TypeSystem of the
target itself (aka the 'scratch TypeSystem'). This is similar to `target modules
dump ast` which dumps the AST of lldb::Modules associated with a selected
target.
Unlike `target modules dump ast`, the new command is not a subcommand of `target
modules dump` as it's not touching the modules of a target at all. Also unlike
`target modules dump ast` I tried to keep the implementation language-neutral,
so this patch moves our Clang `Dump` to the `TypeSystem` interface so it will
also dump the state of any future/downstream scratch TypeSystems (e.g., Swift).
That's also why the command just refers to a 'typesystem' instead of an 'ast'
(which is only how Clang is necessarily modelling the internal TypeSystem
state).
The main motivation for this patch is that I need to write some tests that check
for duplicates in the ScratchTypeSystemClang of a target. There is currently no
way to check for this at the moment (beside measuring memory consumption of
course). It's probably also useful for debugging LLDB itself.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D111936
`Target::GetScratchTypeSystems` returns the list of scratch TypeSystems. The
current implementation is iterating over all LanguageType values and retrieves
the respective TypeSystem for each LanguageType.
All C/C++/Obj-C LanguageTypes are however mapped to the same
ScratchTypeSystemClang instance, so the current implementation adds this single
TypeSystem instance several times to the list of TypeSystems (once for every
LanguageType that we support).
The only observable effect of this is that `SBTarget.FindTypes` for builtin
types currently queries the ScratchTypeSystemClang several times (and also adds
the same result several times).
Reviewed By: bulbazord, labath
Differential Revision: https://reviews.llvm.org/D111931
gdbserver does not expose combined ymm* registers but rather XSAVE-style
split xmm* and ymm*h portions. Extend value_regs to support combining
multiple registers and use it to create user-friendly ymm* registers
that are combined from split xmm* and ymm*h portions.
Differential Revision: https://reviews.llvm.org/D108937
The point is to allow users with a related set of script based commands
to organize their commands in a hierarchy in the command set, rather than
having to have only top-level commands.
Differential Revision: https://reviews.llvm.org/D110298
Adding the to be loaded dylib to the extra images causes the breakpoint
to be found in the image added to the target on Linux (though not on
Darwin). So adjust the test for this difference.
I added some tests for the case where the breakpoints take immediately
to the extant test case, and made a new test case for when the source
regex breakpoint will be set in a dlopen-ed library.
I also noticed when doing this that "lldbutil.run_to_source_breakpoint
can't handle the case where the breakpoint will be in a dlopen-ed
library, since it requires the breakpoint to have at least 1 location
before run. I fixed that by adding a parameter to say whether a
before run location is expected.
Differential Revision: https://reviews.llvm.org/D111920
It's been broken (not failing, but not testing anything either) for
quite some time now, and nobody noticed. It also (by design) tests
stepping through libc code, which makes it completely non-hermetic.
It's not worth reviving such a test.
This test starts failing when people add a setting starting with
`target.process.t` which of course can easily happen. Make it a bit more
resistant by only requiring that `target.process.thr` has a unique completion.
Fix a bug introduced while refactoring ABIAArch64::AugmentRegisterInfo()
that caused subregisters to be added even if they were already present.
Instead, abort immediately if at least one subregister is found
(following ABIX86). While at it, add a test for that.
Differential Revision: https://reviews.llvm.org/D111881
When we know the bounds of the array, print any embedded nuls instead of
treating them as terminators. An exception to this rule is made for the
nul character at the very end of the string. We don't print that, as
otherwise 99% of the strings would end in \0. This way the strings
usually come out the same as how the user typed it into the compiler
(char foo[] = "with\0nuls"). It also matches how they come out in gdb.
This resolves a FIXME left from D111399, and leaves another FIXME for dealing
with nul characters in "escape-non-printables=false" mode. In this mode the
characters cause the entire summary string to be terminated prematurely.
Differential Revision: https://reviews.llvm.org/D111634
These tests fail every 10 or so runs on Windows causing both local failures as well as buildbot failures.
Differential Revision: https://reviews.llvm.org/D111659
Intel MPX failed to gain wide adoption and has been deprecated for a while.
GCC 9.1 removed Intel MPX support. Linux kernel removed MPX in 2019.
glibc 2.35 will remove the support.
Adjust the encoding and format applied to i387_ext and vec* type
registers from gdbserver to match lldb-server. Both types are now
displayed as vector of uint8 instead of float and integer formats used
before. Additionally, this fixes display of STi registers when they do
not carry floating-point data (they are also used to hold MMX vectors).
Differential Revision: https://reviews.llvm.org/D108468
Remove the redudant "0x" prefix in the "dirty-pages" key of
qMemoryRegionInfo packet. The client accepts hex values both with
and without the prefix.
Differential Revision: https://reviews.llvm.org/D110510
Create pseudo-registers on the AArch64 target if they are not provided
by the remote server. This is the case for gdbserver. The created
registers are:
- 32-bit wN partials for 64-bit xN registers
- double precision floating-point dN registers (overlapping with vN)
- single precision floating-point sN registers (overlapping with vN)
Differential Revision: https://reviews.llvm.org/D109876
Rewrite the register reading/writing tests to use explicit qRegisterInfo
packets rather than relying on ARM registers being hardcoded in LLDB.
While at it, use x86_64 for tests -- since it was easier for me to get
the register lists from that architecture.
Differential Revision: https://reviews.llvm.org/D111496
This adds support for parsing DW_AT_calling_convention in the DWARF parser.
The generic DWARF parsing code already support extracting this attribute from A
DIE and TypeSystemClang already offers a parameter to add a calling convention
to a function type (as the PDB parser supports calling convention parsing), so
this patch just converts the DWARF enum value to the Clang enum value and adds a
few tests.
There are two tests in this patch.:
* A unit test for the added DWARF parsing code that should run on all platforms.
* An API tests that covers the whole expression evaluation machinery by trying
to call functions with non-standard calling conventions. The specific subtests
are target specific as some calling conventions only work on e.g. win32 (or, if
they work on other platforms they only really have observable differences on a
specific target). The tests are also highly compiler-specific, so if GCC or
Clang tell us that they don't support a specific calling convention then we just
skip the test.
Note that some calling conventions are supported by Clang but aren't implemented
in LLVM (e.g. `pascal`), so there we just test that if this ever gets
implemented in LLVM that LLDB works too. There are also some more tricky/obscure
conventions that are left out such as the different swift* conventions, some
planned Obj-C conventions (`Preserve*`), AAPCS* conventions (as the DWARF->Clang
conversion is ambiguous for AAPCS and APPCS-VFP) and conventions only used for
OpenCL etc.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D108629
This patch adds support for memory regions in Scripted Processes.
This is necessary to read the stack memory region in order to
reconstruct each stackframe of the program.
In order to do so, this patch makes some changes to the SBAPI, namely:
- Add a new constructor for `SBMemoryRegionInfo` that takes arguments
such as the memory region name, address range, permissions ...
This is used when reading memory at some address to compute the offset
in the binary blob provided by the user.
- Add a `GetMemoryRegionContainingAddress` method to `SBMemoryRegionInfoList`
to simplify the access to a specific memory region.
With these changes, lldb is now able to unwind the stack and reconstruct
each frame. On top of that, reloading the target module at offset 0 allows
lldb to symbolicate the `ScriptedProcess` using debug info, similarly to an
ordinary Process.
To test this, I wrote a simple program with multiple function calls, ran it in
lldb, stopped at a leaf function and read the registers values and copied
the stack memory into a binary file. These are then used in the python script.
Differential Revision: https://reviews.llvm.org/D108953
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch introduces the `ScriptedThread` class with its python
interface.
When used with `ScriptedProcess`, `ScriptedThreaad` can provide various
information such as the thread state, stop reason or even its register
context.
This can be used to reconstruct the program stack frames using lldb's unwinder.
rdar://74503836
Differential Revision: https://reviews.llvm.org/D107585
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This has started failing since we moved our bots to Focal.
For unknown reasons the abort_caller stack is missing when
we check from the handler breakpoint.
Mark unsupported while I investigate.
Just regrouping the checks for the same typedef together and also giving the
different typedefs unique names. We might want to have a second test with
identical names to see how LLDB handle the potential name conflict, but that
should be a separate test and not part of the main typedef test.
Also this test is actually unintentionally passing. LLDB can't lookup typedefs
in a struct/class scope, but in the test the check passes as the local variable
in the expression evaluation scope pulls in the typedef. I added a second check
that makes it clear that this is not working right now.
PT_COREDUMP is a relatively recent addition. Use an #ifdef to skip it
if the underlying system does not support it.
Differential Revision: https://reviews.llvm.org/D111214
This patch allows LLDB to accept register sizes which are not aligned
to 8 bits bitsize boundary. This fixes a crash in LLDB when connecting
to OpenOCD stub. GDB xml description allows for non-aligned bit lengths
but they are rounded off to nearest byte during transfer. In case of
OpenOCD some of SOC specific system registers were less than a single
byte in length and were causing LLDB to crash.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D111131
The `fallback` setting for import-std-module is supposed to allow running
expression that require an imported C++ module without causing any regressions
for users (neither in terms of functionality nor performance). This is done by
first trying to normally parse/evaluate an expression and when an error occurred
during this first attempt, we retry with the loaded 'std' module.
When we run into a system with a 'std' module that for some reason doesn't build
or otherwise causes parse errors, then this currently means that the second
parse attempt will overwrite the error diagnostics of the first parse attempt.
Given that the module build errors are outside of the scope of what the user can
influence, it makes more sense to show the errors from the first parse attempt
that are only concerned with the actual user input.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D110696
Fix the termination of "process connect" (and "gdb-remote") to kill
the process rather than attempting to disconnect the platform.
The latter only results in an error since we did not use "platform
connect", and apparently process-level connections (at least via
gdb-remote) do not really support disconnecting.
Differential Revision: https://reviews.llvm.org/D110996