This patch fixes a problem introduced by clang change
https://reviews.llvm.org/D95617 and described by
https://bugs.llvm.org/show_bug.cgi?id=50076#c6, where inlined functions
omit unused parameters both in the stack trace and in `frame var`
command. With this patch, the parameters are listed correctly in the
stack trace and in `frame var` command.
Specifically, we parse formal parameters from the abstract version of
inlined functions and use those formal parameters if they are missing
from the concrete version.
Differential Revision: https://reviews.llvm.org/D110571
specifically, ignore addresses that point before the first code section.
This resurrects D87172 with several notable changes:
- it fixes a bug where the early exits in InitializeObject left
m_first_code_address "initialized" to LLDB_INVALID_ADDRESS (0xfff..f),
which caused _everything_ to be ignored.
- it extends the line table fix to function parsing as well, where it
replaces a similar check which was checking the executable permissions
of the section. This was insufficient because some
position-independent elf executables can have an executable segment
mapped at file address zero. (What makes this fix different is that it
checks for the executable-ness of the sections contained within that
segment, and those will not be at address zero.)
- It uses a different test case, with an elf file with near-zero
addresses, and checks for both line table and function parsing.
Differential Revision: https://reviews.llvm.org/D112058
There is no reason why this function should be returning a ConstString.
While modifying these files, I also fixed several instances where
GetPluginName and GetPluginNameStatic were returning different strings.
I am not changing the return type of GetPluginNameStatic in this patch, as that
would necessitate additional changes, and this patch is big enough as it is.
Differential Revision: https://reviews.llvm.org/D111877
When we know the bounds of the array, print any embedded nuls instead of
treating them as terminators. An exception to this rule is made for the
nul character at the very end of the string. We don't print that, as
otherwise 99% of the strings would end in \0. This way the strings
usually come out the same as how the user typed it into the compiler
(char foo[] = "with\0nuls"). It also matches how they come out in gdb.
This resolves a FIXME left from D111399, and leaves another FIXME for dealing
with nul characters in "escape-non-printables=false" mode. In this mode the
characters cause the entire summary string to be terminated prematurely.
Differential Revision: https://reviews.llvm.org/D111634
This reverts c7f16ab3e3 / r109694 - which
suggested this was done to improve consistency with the gdb test suite.
Possible that at the time GCC did not canonicalize integer types, and so
matching types was important for cross-compiler validity, or that it was
only a case of over-constrained test cases that printed out/tested the
exact names of integer types.
In any case neither issue seems to exist today based on my limited
testing - both gdb and lldb canonicalize integer types (in a way that
happens to match Clang's preferred naming, incidentally) and so never
print the original text name produced in the DWARF by GCC or Clang.
This canonicalization appears to be in `integer_types_same_name_p` for
GDB and in `TypeSystemClang::GetBasicTypeEnumeration` for lldb.
(I tested this with one translation unit defining 3 variables - `long`,
`long (*)()`, and `int (*)()`, and another translation unit that had
main, and a function that took `long (*)()` as a parameter - then
compiled them with mismatched compilers (either GCC+Clang, or
Clang+(Clang with this patch applied)) and no matter the combination,
despite the debug info for one CU naming the type "long int" and the
other naming it "long", both debuggers printed out the name as "long"
and were able to correctly perform overload resolution and pass the
`long int (*)()` variable to the `long (*)()` function parameter)
Did find one hiccup, identified by the lldb test suite - that CodeView
was relying on these names to map them to builtin types in that format.
So added some handling for that in LLVM. (these could be split out into
separate patches, but seems small enough to not warrant it - will do
that if there ends up needing any reverti/revisiting)
Differential Revision: https://reviews.llvm.org/D110455
This patch considers the CU index entry
when reading the .debug_rnglists.dwo section.
Reviewed By: jankratochvil
Differential Revision: https://reviews.llvm.org/D107456
Fix D98289 so that it works even for 2nd..nth compilation unit
(.debug_rnglists).
Reviewed By: dblaikie, ikudrin
Differential Revision: https://reviews.llvm.org/D106466
This test is specifying the lldb log channel via `ll""db` which only really works
because the command parser ends up parsing that as `lldb`. Just putting the
channel name in quotes is enough to avoid the lldb command substitution and
doesn't rely on this weird parser behaviour.
Skeleton vs. DWO units mismatch has been fixed in D106270. As they both
have type DWARFUnit it is a bit difficult to debug. So it is better to
make it safe against future changes.
Reviewed By: kimanh, clayborg
Differential Revision: https://reviews.llvm.org/D107659
When going through the CU entries in the name index,
make sure to compare the name entry's CU
offset against the skeleton CU's offset.
Previously there would be a mismatch, since the
wrong offset was compared, and thus no suitable
entry was found.
Reviewed By: jankratochvil
Differential Revision: https://reviews.llvm.org/D106270
Summary:
In the spirit of https://reviews.llvm.org/D70846, we only return functions with
matching mangled name from Apple/DebugNamesDWARFIndex::GetFunction if
eFunctionNameTypeFull is requested.
This speeds up lookup in the presence of large amount of class methods of the
same name (a typical examples would be constructors of templates with many
instantiations or overloaded operators).
Reviewers: labath, teemperor
Reviewed By: labath, teemperor
Subscribers: aprantl, arphaman, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D73191
This patch fixes the lookup of locations in
.debug_loclists, if they are split in a .dwp file.
Mainly, we need to consider the cu index offsets.
Reviewed By: jankratochvil
Differential Revision: https://reviews.llvm.org/D107161
In some environments this test could fail if start.S has its own DWARF
CompileUnit or similar are included before the DWARF CompileUnit for the
file.
This change makes the test independent of the index of the compile unit,
instead checking the filename.
Reviewed By: herhut, jankratochvil
Differential Revision: https://reviews.llvm.org/D107300
This change makes sure that DwarfUnit does not load a .dwo file until
necessary. I also take advantage of DWARF 5's guarantee that the first
support file is also the primary file to make it possible to create
a compile unit without loading the .dwo file.
Testcases now require Linux as it is needed for -gsplit-dwarf.
Review By: jankratochvil, dblaikie
Differential Revision: https://reviews.llvm.org/D100299
This change makes sure that DwarfUnit does not load a .dwo file until
necessary. I also take advantage of DWARF 5's guarantee that the first
support file is also the primary file to make it possible to create
a compile unit without loading the .dwo file.
Review By: jankratochvil, dblaikie
Differential Revision: https://reviews.llvm.org/D100299
This change makes sure that DwarfUnit does not load a .dwo file until
necessary. I also take advantage of DWARF 5's guarantee that the first
support file is also the primary file to make it possible to create
a compile unit without loading the .dwo file.
Review By: jankratochvil, dblaikie
Differential Revision: https://reviews.llvm.org/D100299
This is a resubmission of https://reviews.llvm.org/D105160 after fixing testing issues.
This fix was created after profiling the target creation of a large C/C++/ObjC application that contained almost 4,000,000 redacted symbol names. The symbol table parsing code was creating names for each of these synthetic symbols and adding them to the name indexes. The code was also adding the object file basename to the end of the symbol name which doesn't allow symbols from different shared libraries to share the names in the constant string pool.
Prior to this fix this was creating 180MB of "___lldb_unnamed_symbol" symbol names and was taking a long time to generate each name, add them to the string pool and then add each of these names to the name index.
This patch fixes the issue by:
not adding a name to synthetic symbols at creation time, and allows name to be dynamically generated when accessed
doesn't add synthetic symbol names to the name indexes, but catches this special case as name lookup time. Users won't typically set breakpoints or lookup these synthetic names, but support was added to do the lookup in case it does happen
removes the object file baseanme from the generated names to allow the names to be shared in the constant string pool
Prior to this fix the startup times for a large application was:
12.5 seconds (cold file caches)
8.5 seconds (warm file caches)
After this fix:
9.7 seconds (cold file caches)
5.7 seconds (warm file caches)
The names of the symbols are auto generated by appending the symbol's UserID to the end of the "___lldb_unnamed_symbol" string and is only done when the name is requested from a synthetic symbol if it has no name.
Differential Revision: https://reviews.llvm.org/D106837
Constructor homing reduces the amount of class type info that is emitted
by emitting conmplete type info for a class only when a constructor for
that class is emitted.
This will mainly reduce the amount of duplicate debug info in object
files. In Chrome enabling ctor homing decreased total build directory sizes
by about 30%.
It's also expected that some class types (such as unused classes)
will no longer be emitted in the debug info. This is fine, since we wouldn't
expect to need these types when debugging.
In some cases (e.g. libc++, https://reviews.llvm.org/D98750), classes
are used without calling the constructor. Since this is technically
undefined behavior, enabling constructor homing should be fine.
However Clang now has an attribute
`__attribute__((standalone_debug))` that can be used on classes to
ignore ctor homing.
Bug: https://bugs.llvm.org/show_bug.cgi?id=46537
Differential Revision: https://reviews.llvm.org/D106084
This fix was created after profiling the target creation of a large C/C++/ObjC application that contained almost 4,000,000 redacted symbol names. The symbol table parsing code was creating names for each of these synthetic symbols and adding them to the name indexes. The code was also adding the object file basename to the end of the symbol name which doesn't allow symbols from different shared libraries to share the names in the constant string pool.
Prior to this fix this was creating 180MB of "___lldb_unnamed_symbol" symbol names and was taking a long time to generate each name, add them to the string pool and then add each of these names to the name index.
This patch fixes the issue by:
- not adding a name to synthetic symbols at creation time, and allows name to be dynamically generated when accessed
- doesn't add synthetic symbol names to the name indexes, but catches this special case as name lookup time. Users won't typically set breakpoints or lookup these synthetic names, but support was added to do the lookup in case it does happen
- removes the object file baseanme from the generated names to allow the names to be shared in the constant string pool
Prior to this fix the startup times for a large application was:
12.5 seconds (cold file caches)
8.5 seconds (warm file caches)
After this fix:
9.7 seconds (cold file caches)
5.7 seconds (warm file caches)
The names of the symbols are auto generated by appending the symbol's UserID to the end of the "___lldb_unnamed_symbol" string and is only done when the name is requested from a synthetic symbol if it has no name.
Differential Revision: https://reviews.llvm.org/D105160
Reverts commits:
"Fix failing tests after https://reviews.llvm.org/D104488."
"Fix buildbot failure after https://reviews.llvm.org/D104488."
"Create synthetic symbol names on demand to improve memory consumption and startup times."
This series of commits broke the windows lldb bot and then failed to fix all of the failing tests.
In D98289#inline-939112 @dblaikie said:
Perhaps this could be more informative about what makes the range list
index of 0 invalid? "index 0 out of range of range list table (with
range list base 0xXXX) with offset entry count of XX (valid indexes
0-(XX-1))" Maybe that's too verbose/not worth worrying about since
this'll only be relevant to DWARF producers trying to debug their
DWARFv5, maybe no one will ever see this message in practice. Just
a thought.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D102851
DW_AT_ranges can use DW_FORM_sec_offset (instead of DW_FORM_rnglistx).
In such case DW_AT_rnglists_base does not need to be present.
DWARF-5 spec:
"If the offset_entry_count is zero, then DW_FORM_rnglistx cannot
be used to access a range list; DW_FORM_sec_offset must be used
instead. If the offset_entry_count is non-zero, then
DW_FORM_rnglistx may be used to access a range list;"
This fix is for TestTypeCompletion.py category `dwarf` using GCC with DWARF-5.
The fix just provides GetRnglist() lazy getter for `m_rnglist_table`.
The testcase is easier to review by:
diff -u lldb/test/Shell/SymbolFile/DWARF/DW_AT_low_pc-addrx.s \
lldb/test/Shell/SymbolFile/DWARF/DW_AT_range-DW_FORM_sec_offset.s
Differential Revision: https://reviews.llvm.org/D98289
DWARF allows .dwo file paths to be relative rather than absolute. When
they are relative, DWARF uses DW_AT_comp_dir to find the .dwo
file. DW_AT_comp_dir can also be relative, making the entire search
patch for the .dwo file relative. In this case, LLDB currently
searches relative to its current working directory, i.e. the directory
from which the debugger was launched. This is not right, as the
compiler, which generated the relative paths, can have no idea where
the debugger will be launched. The correct thing is to search relative
to the location of the executable binary. That is what this patch
does.
Differential Revision: https://reviews.llvm.org/D97786
DWARF allows .dwo file paths to be relative rather than absolute. When
they are relative, DWARF uses DW_AT_comp_dir to find the .dwo
file. DW_AT_comp_dir can also be relative, making the entire search
patch for the .dwo file relative. In this case, LLDB currently
searches relative to its current working directory, i.e. the directory
from which the debugger was launched. This is not right, as the
compiler, which generated the relative paths, can have no idea where
the debugger will be launched. The correct thing is to search relative
to the location of the executable binary. That is what this patch
does.
Differential Revision: https://reviews.llvm.org/D97786
These tests fail if you build without the x86 llvm backend.
Either because they use an x86 triple or try to backtrace which
requires some x86 knowledge to see all frames.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D100194
By moving them into a folder with a local lit config
requiring x86. All these tests use x86 target triples.
There are two tests that require target-x86_64 because
they run program files (instead of just needing the backend).
Those are moved to the x86 folder also but their REQUIRES are
unchanged.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D100193
The file contained bogus input - the DIE list was not properly
terminated. This should not cause a crash, but it seems it was crashing
at least on linux arm and x86 windows.
SymbolFileDWARF::ResolveSymbolContext is currently unaware that in DWARF5 the primary file is specified at file index 0. As a result it misses to correctly resolve the symbol context for the primary file when DWARF5 debug data is used and the primary file is only specified at index 0.
This change makes use of CompileUnit::ResolveSymbolContext to resolve the symbol context. The ResolveSymbolContext in CompileUnit has been previously already updated to reflect changes in DWARF5
and contains a more readable version. It can resolve more, but will also do a bit more work than
SymbolFileDWARF::ResolveSymbolContext (getting the Module, and going through SymbolFileDWARF::ResolveSymbolContextForAddress), however, it's mostly directed by $resolve_scope
what will be resolved, and ensures that code is easier to maintain if there's only one path.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D98619
Apply changes from https://reviews.llvm.org/D91014 to other places where DWARF entries are being processed.
Test case is provided by @jankratochvil.
The test is marked to run only on x64 and exclude Windows and Darwin, because the assembly is not OS-independent.
(First attempt https://reviews.llvm.org/D96778 broke the build bots)
Reviewed By: jankratochvil
Differential Revision: https://reviews.llvm.org/D97765
In DWARF v4 compile units go in .debug_info and type units go in
.debug_types. However, in v5 both kinds of units are in .debug_info.
Therefore we can't decide whether to use the CU or TU index just by
looking at which section we're reading from. We have to wait until we
have read the unit type from the header.
Differential Revision: https://reviews.llvm.org/D96194