Add frame variable dereference suppport to libc++ `std::unique_ptr`.
This change allows for commands like `v *thing_up` and `v thing_up->m_id`. These commands now work the same way they would with raw pointers, and as they would with expression. This is done by adding an unaccounted for child member named `$$dereference$$`.
Without this change, the command would have to be written as `v *thing_up.__value_` or v thing_up.__value_->m_id` which exposes internal structure and is more clumsy to type.
Additionally, the existing tests were updated. See also https://reviews.llvm.org/D97165 which added deref support for `std::shared_ptr`.
Differential Revision: https://reviews.llvm.org/D97524
Add `frame variable` dereference suppport to libc++ `std::shared_ptr`.
This change allows for commands like `v *thing_sp` and `v thing_sp->m_id`. These
commands now work the same way they do with raw pointers. This is done by adding an
unaccounted for child member named `$$dereference$$`.
Also, add API tests for `std::shared_ptr`, previously there were none.
Differential Revision: https://reviews.llvm.org/D97165
Convert `assertTrue(a == b)` to `assertEqual(a, b)` to produce better failure messages.
These were mostly done via regex search & replace, with some manual fixes.
Differential Revision: https://reviews.llvm.org/D95813
ObjCBOOLSummaryProvider was incorrectly treating BOOL as unsigned and this is now fixed.
Also adding tests for one bit bit-fields of BOOL and unsigned char.
Display null pointer as `nullptr`, `nil` and `NULL` for C++,
Objective-C/Objective-C++ and C respectively. The original motivation
for this patch was to display a null std::string pointer as nullptr
instead of "", but the fix seemed generic enough to be done for all
summary providers.
Differential revision: https://reviews.llvm.org/D77153
Commit 5f12f4ff90 made suppressing inline namespaces
when printing typenames default to true. As we're using the inline namespaces
in LLDB to construct internal type names (which need internal namespaces in them
to, for example, differentiate libc++'s std::__1::string from the std::string
from libstdc++), this broke most of the type formatting logic.
Make category-specifying files visible. There is really no good reason
to keep them hidden, and having them visible increases the chances
that someone will actually spot them.
Differential Revision: https://reviews.llvm.org/D91065
Replace the plethora of ObjC-implied 'skipUnlessDarwin' decorators
with marking tests as 'objc' category (whenever missing), and skip all
ObjC tests on non-Darwin platforms. I have used '.categories' file
wherever it was present already or all (>1) tests were relying on ObjC,
and explicit add_test_categories() where there was only one test.
Differential Revision: https://reviews.llvm.org/D91056
Use skipUnlessDarwin decorator for tests that are specific to Darwin,
instead of skipIf... for all other platforms. This should make it clear
that these tests are not supposed to work elsewhere. It will also make
these tests stop repeatedly popping up while I look for tests that could
be fixed on the platform in question.
Differential Revision: https://reviews.llvm.org/D91003
The new FreeBSDRemote plugin has reached feature parity on i386
and amd64 targets. Use it by default on these architectures, while
allowing the use of the legacy plugin via FREEBSD_LEGACY_PLUGIN envvar.
Revisit the method of switching plugins. Apparently, the return value
of PlatformFreeBSD::CanDebugProcess() is what really decides whether
the legacy or the new plugin is used.
Update the test status. Reenable the tests that were previously
disabled on FreeBSD and do not cause hangs or are irrelevant to FreeBSD.
Mark all tests that fail reliably as expectedFailure. For now, tests
that are flaky (i.e. produce unstable results) are left enabled
and cause unpredictable test failures.
Differential Revision: https://reviews.llvm.org/D90757
Add preconditions to `TestBase.expect()` that catch semantically invalid calls
that happen to succeed anyway. This also fixes the broken callsites caught by
these checks.
This prevents the following incorrect calls:
1. `self.expect("lldb command", "some substr")`
2. `self.expect("lldb command", "assert message", "some substr")`
Differential Revision: https://reviews.llvm.org/D88792
Usually when we enter a SWIG wrapper function from Python, SWIG automatically
adds a `Py_BEGIN_ALLOW_THREADS`/`Py_END_ALLOW_THREADS` around the call to the SB
API C++ function. This will ensure that Python's GIL is released when we enter
LLDB and locked again when we return to the wrapper code.
D51569 changed this behaviour but only for the generated `__str__` wrappers. The
added `nothreadallow` disables the injection of the GIL release/re-acquire code
and the GIL is now kept locked when entering LLDB and is expected to be still
locked when returning from the LLDB implementation. The main reason for that was
that back when D51569 landed the wrapper itself created a Python string. These
days it just creates a std::string and SWIG itself takes care of getting the GIL
and creating the Python string from the std::string, so that workaround isn't
necessary anymore.
This patch just removes `nothreadallow` so that our `__str__` functions now
behave like all other wrapper functions in that they release the GIL when
calling into the SB API implementation.
The motivation here is actually to work around another potential bug in LLDB.
When one calls into the LLDB SB API while holding the GIL and that call causes
LLDB to interpret some Python script via `ScriptInterpreterPython`, then the GIL
will be unlocked when the control flow returns from the SB API. In the case of
the `__str__` wrapper this would cause that the next call to a Python function
requiring the GIL would fail (as SWIG will not try to reacquire the GIL as it
isn't aware that LLDB removed it).
The reason for this unexpected GIL release seems to be a workaround for recent
Python versions:
```
// The only case we should go further and acquire the GIL: it is unlocked.
if (PyGILState_Check())
return;
```
The early-exit here causes `InitializePythonRAII::m_was_already_initialized` to
be always false and that causes that `InitializePythonRAII`'s destructor always
directly unlocks the GIL via `PyEval_SaveThread`. I'm investigating how to
properly fix this bug in a follow up patch, but for now this straightforward
patch seems to be enough to unblock my other patches (and it also has the
benefit of removing this workaround).
The test for this is just a simple test for `std::deque` which has a synthetic
child provider implemented as a Python script. Inspecting the deque object will
cause `expect_expr` to create a string error message by calling
`str(deque_object)`. Printing the ValueObject causes the Python script for the
synthetic children to execute which then triggers the bug described above where
the GIL ends up being unlocked.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D88302
expect_expr currently can't verify the children of the result SBValue.
This patch adds the ability to check them. The idea is to have a CheckValue
class where one can specify what attributes of a SBValue should be checked.
Beside the properties we already check for (summary, type, etc.) this also
has a list of children which is again just a list of CheckValue object (which
can also have children of their own).
The main motivation is to make checking the children no longer based
on error-prone substring checks that allow tests to pass just because
for example the error message contains the expected substrings by accident.
I also expect that we can just have a variant of `expect_expr` for LLDB's
expression paths (aka 'frame var') feature.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D83792
Summary: Add printing of the output of stdout during compile errors, in
addition to stderr output.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D83425
Summary:
Certain `NSDate` constructors return a special `NSConstantDate` class which
currently ends up being unformatted as it's not in the list of supported classes
for the NSDate formatter. This patch adds that class to the supported class list
so LLDB produces a summary for it.
One of these special constructors is `[NSDate distantPast]` which returns the
date for `0001-01-01 00:00:00 UTC`. LLDB has a special case for formatting this
date but for some reason we did hardcode the wrong summary string in that
special case. Maybe the summary string was correct back when the code was
written but it isn't correct anymore (`distantPast` isn't actually defined to be
a special date but just some 'a guaranteed temporal boundary.' so maybe someone
changed the value in the last 10 years).
If someone else is wondering why we even have this special case for
`distantPast` but not for the future. The reason seems to be that our date
formatting for really old dates is off by 24 hours. So for example, adding one
second to `distantPast` will cause LLDB to print `0000-12-30 00:00:01 UTC`
(which is 24 hours behind the expected result). So to make our code appear to be
correct it seems we just hardcoded the most common NSDate result from that time
span. I'll replace that logic with a generic solution in a probably more
invasive follow up patch.
I also took the freedom to replace the magic value `-63114076800` with some
constant + documentation. I heard there are some people that don't know from the
top of their head that there are 63114076800 seconds between 1. Jan 0001 and 1.
January 2001 in whatever calendar system NSDate is using.
Reviewers: mib, davide
Reviewed By: mib
Subscribers: JDevlieghere
Differential Revision: https://reviews.llvm.org/D83217
Summary:
When printing an NSDate (for example with `NSLog` or `po`) the seconds value is
always rounded down. LLDB's own formatter however isn't following that behaviour
which leads to situations where the formatted result is sometimes one second
off. For example:
```
(lldb) p [NSDate dateWithTimeIntervalSince1970:0.1]
(__NSTaggedDate *) $1 = [...] 1970-01-01 00:00:01 UTC
(lldb) po [NSDate dateWithTimeIntervalSince1970:0.1]
1970-01-01 00:00:00 +0000
(lldb) p [NSDate dateWithTimeIntervalSince1970:0.6]
(__NSTaggedDate *) $4 =[...] 1970-01-01 00:00:01 UTC
(lldb) po [NSDate dateWithTimeIntervalSince1970:0.6]
1970-01-01 00:00:00 +0000
```
This patch just always rounds down the seconds value we get from the NSDate
object.
Fixes rdar://65084800
Reviewers: mib, davide
Reviewed By: mib
Subscribers: JDevlieghere
Differential Revision: https://reviews.llvm.org/D83221
OSType with less than 8 bytes has special code that isn't tested yet.
The same for C-strings that don't have `const char *` type. Also we're now testing
escaping the ASCII escape sequence (\033).
Reland 90c1af106a . This changes the char format
tests which were printing the pointer value of the C-string instead of its
contents, so this test failed on other machines. Now they just print the
bytes in a uint128_t.
Original commit description:
The previous tests apparently missed a few code branches in DumpDataExtractor
code. Also renames the 'test_instruction' which had the same name as another
test (and Python therefore ignored the test entirely).
The previous tests apparently missed a few code branches in DumpDataExtractor
code. Also renames the 'test_instruction' which had the same name as another
test (and Python therefore ignored the test entirely).
Support printing strings which contain invalid utf8 sub-sequences, e.g.
strings like "hello world \xfe", instead of bailing out with "Summary
Unavailable".
I took the opportunity here to delete some hand-rolled utf8 -> utf32
conversion code and replace it with calls into llvm's Support library.
rdar://61554346
Many tests use (commented out) print statement for debugging the test
itself. This patch adds a new trace method to lldbtest to reuse the
existing tracing infrastructure and replace these print statements.
Differential revision: https://reviews.llvm.org/D80448
This patch improves data formatting for CFDictionaryRef and CFSetRef.
It uses the same data-formatter as NSCFDictionaries and NSCFSets introduced
previously but did require some adjustments in Core::ValueObject.
Since the "Ref" types are opaque pointers to the actual CF containers, if the
value object has a synthetic value, lldb will use the opaque pointer's pointee
type to create the new ValueObjectChild needed to dereference the ValueObject.
This allows the "Ref" types to behaves the same as CF containers when used with
the `frame variable` command, the SBAPI or in Xcode's variable inspector.
This patch also adds support for incomplete types in ValueObject.
rdar://53104287
Differential Revision: https://reviews.llvm.org/D79554
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
The source file used to test Objective-C data-formatters didn't respected
any formatting (mixed tab and spaces, lines exceed column 80, etc...).
This patch reformats the file using clang-format to make it easier to
work with.
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch improves data formatting for CoreFoundation containers:
CFDictionary and CFSet.
These data formatters make the containers and their children appear in Xcode's
variables view (and on the command line) without having to expand the
data structure.
Previous implementation only supported showing the container's element count.
```
(lldb) frame var dict
(__NSCFDictionary *) dict = 0x00000001004062b0 2 key/value pairs
(lldb) frame var set
(__NSCFSet *) set = 0x0000000100406330 2 elements
```
Now the variable can be dereferenced to dispaly the container's children:
```
(lldb) frame var *dict
(__NSCFDictionary) *dict = {
[0] = {
key = 0x0000000100004050 @"123"
value = 0x0000000100004090 @"456"
}
[1] = {
key = 0x0000000100004030 @"abc"
value = 0x0000000100004070 @"def"
}
}
(lldb) frame var *set
(__NSCFSet) *set = {
[0] = 0x0000000100004050 @"123"
[1] = 0x0000000100004030 @"abc"
}
```
rdar://39882287
Differential Revision: https://reviews.llvm.org/D78396
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Summary:
Detection of C strings does not work well for pointers. If the value object holding a (char*) pointer does not have an address (e.g., if it is a temp), the value is not considered a C string and its formatting is left to DumpDataExtractor rather than the special handling in ValueObject::DumpPrintableRepresentation. This leads to inconsistent outputs, e.g., in escaping non-ASCII characters. See the test for an example; the second test expectation is not met (without this patch). With this patch, the C string detection only insists that the pointer value is valid. The patch makes the code consistent with how the pointer is obtained in ValueObject::ReadPointedString.
Reviewers: teemperor
Reviewed By: teemperor
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D76650
This adds a formatter for libc++ std::unique_ptr.
I also refactored GetValueOfCompressedPair(...) out of LibCxxList.cpp since I need the same functionality and it made sense to share it.
Differential Revision: https://reviews.llvm.org/D76476
(This is D68010 but I also set the new parameter in LibStdcpp.cpp to fix
the Debian tests).
Summary:
Printing a summary for an empty NSPathStore2 string currently prints random bytes behind the empty string pointer from memory (rdar://55575888).
It seems the reason for this is that the SourceSize parameter in the `ReadStringAndDumpToStreamOptions` - which is supposed to contain the string
length - actually uses the length 0 as a magic value for saying "read as much as possible from the buffer" which is clearly wrong for empty strings.
This patch adds another flag that indicates if we have know the string length or not and makes this behaviour dependent on that (which seemingly
was the original purpose of this magic value).
Reviewers: aprantl, JDevlieghere, shafik
Reviewed By: aprantl
Subscribers: christof, abidh, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D68010
This reverts commit 939ca455e7.
This failed on the debian bot for some reason:
File "/home/worker/lldb-x86_64-debian/lldb-x86_64-debian/llvm-project/lldb/test/API/functionalities/data-formatter/data-formatter-stl/libstdcpp/string/TestDataFormatterStdString.py", line 67, in test_with_run_command
"s summary wrong")
AssertionError: 'L"hello world! מזל טוב!\\0!\\0!!!!\\0\\0A\\0\\U0000fffd\\U0000fffd\\U0000fffd\\ [truncated]... != 'L"hello world! מזל טוב!"'
Diff is 2156 characters long. Set self.maxDiff to None to see it. : s summary wrong
Summary:
Printing a summary for an empty NSPathStore2 string currently prints random bytes behind the empty string pointer from memory (rdar://55575888).
It seems the reason for this is that the SourceSize parameter in the `ReadStringAndDumpToStreamOptions` - which is supposed to contain the string
length - actually uses the length 0 as a magic value for saying "read as much as possible from the buffer" which is clearly wrong for empty strings.
This patch adds another flag that indicates if we have know the string length or not and makes this behaviour dependent on that (which seemingly
was the original purpose of this magic value).
Reviewers: aprantl, JDevlieghere, shafik
Reviewed By: aprantl
Subscribers: christof, abidh, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D68010
On Apple platforms, is __arm__ isn't defined and we're not on Intel, we use an
alternate std::string layout. I.e., the libcxx string test fails on phones
because the hand-crafted "garbage" string structs are actually valid strings.
See:
```
// _LIBCPP_ALTERNATE_STRING_LAYOUT is an old name for
// _LIBCPP_ABI_ALTERNATE_STRING_LAYOUT left here for backward compatibility.
#if (defined(__APPLE__) && !defined(__i386__) && !defined(__x86_64__) && \
(!defined(__arm__) || __ARM_ARCH_7K__ >= 2)) || \
defined(_LIBCPP_ALTERNATE_STRING_LAYOUT)
#define _LIBCPP_ABI_ALTERNATE_STRING_LAYOUT
#endif
```
Disable inspection of the garbage structs on Apple+ARM devices.
Summary:
Around a third of our test sources have LLVM license headers. This patch removes those headers from all test
sources and also fixes any tests that depended on the length of the license header.
The reasons for this are:
* A few tests verify line numbers and will start failing if the number of lines in the LLVM license header changes. Once I landed my patch for valid SourceLocations in debug info we will probably have even more tests that verify line numbers.
* No other LLVM project is putting license headers in its test files to my knowledge.
* They make the test sources much more verbose than they have to be. Several tests have longer license headers than the actual test source.
For the record, the following tests had their line numbers changed to pass with the removal of the license header:
lldb-api :: functionalities/breakpoint/breakpoint_by_line_and_column/TestBreakpointByLineAndColumn.py
lldb-shell :: Reproducer/TestGDBRemoteRepro.test
lldb-shell :: Reproducer/TestMultipleTargets.test
lldb-shell :: Reproducer/TestReuseDirectory.test
lldb-shell :: ExecControl/StopHook/stop-hook-threads.test
lldb-shell :: ExecControl/StopHook/stop-hook.test
lldb-api :: lang/objc/exceptions/TestObjCExceptions.py
Reviewers: #lldb, espindola, JDevlieghere
Reviewed By: #lldb, JDevlieghere
Subscribers: emaste, aprantl, arphaman, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D74839
Summary:
Currently when printing data types we include implicit scopes such as inline namespaces or anonymous namespaces.
This leads to command output like this (for `std::set<X>` with X being in an anonymous namespace):
```
(lldb) print my_set
(std::__1::set<(anonymous namespace)::X, std::__1::less<(anonymous namespace)::X>, std::__1::allocator<(anonymous namespace)::X> >) $0 = size=0 {}
```
This patch removes all the implicit scopes when printing type names in TypeSystemClang::GetDisplayTypeName
so that our output now looks like this:
```
(lldb) print my_set
(std::set<X, std::less<X>, std::allocator<X> >) $0 = size=0 {}
```
As previously GetDisplayTypeName and GetTypeName had the same output we actually often used the
two as if they are the same method (they were in fact using the same implementation), so this patch also
fixes the places where we actually want the display type name and not the actual type name.
Note that this doesn't touch the `GetTypeName` class that for example the data formatters use, so this patch
is only changes the way we display types to the user. The full type name can also still be found when passing
'-R' to see the raw output of a variable in case someone is somehow interested in that.
Partly fixes rdar://problem/59292534
Reviewers: shafik, jingham
Reviewed By: shafik
Subscribers: christof, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D74478
Summary:
Currently the data formatter is treating `std::atomic` variables as transparent wrappers
around their underlying value type. This causes that when printing `std::atomic<A *>`, the data
formatter will forward all requests for the children of the atomic variable to the `A *` pointer type
which will then return the respective members of `A`. If `A` in turn has a member that contains
the original atomic variable, this causes LLDB to infinitely recurse when printing an object with
such a `std::atomic` pointer member.
We could implement a workaround similar to whatever we do for pointer values but this patch
just implements the `std::atomic` formatter in the same way as we already implement other
formatters (e.g. smart pointers or `std::optional`) that just model the contents of the as a child
"Value". This way LLDB knows when it actually prints a pointer and can just use its normal
workaround if "Value" is a recursive pointer.
Fixes rdar://59189235
Reviewers: JDevlieghere, jingham, shafik
Reviewed By: shafik
Subscribers: shafik, christof, jfb, abidh, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D74310
Summary:
The error message from the construct `assertTrue(a == b, "msg") ` are nearly always completely useless for actually debugging the issue.
This patch is just replacing this construct (and similar ones like `assertTrue(a != b, ...)` with the proper call to assertEqual or assertNotEquals.
This patch was mostly written by a shell script with some manual verification afterwards:
```
lang=python
import sys
def sanitize_line(line):
if line.strip().startswith("self.assertTrue(") and " == " in line:
line = line.replace("self.assertTrue(", "self.assertEquals(")
line = line.replace(" == ", ", ", 1)
if line.strip().startswith("self.assertTrue(") and " != " in line:
line = line.replace("self.assertTrue(", "self.assertNotEqual(")
line = line.replace(" != ", ", ", 1)
return line
for a in sys.argv[1:]:
with open(a, "r") as f:
lines = f.readlines()
with open(a, "w") as f:
for line in lines:
f.write(sanitize_line(line))
```
Reviewers: labath, JDevlieghere
Reviewed By: labath
Subscribers: abidh, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D74475
Summary: Moves lldbsuite tests to lldb/test/API.
This is a largely mechanical change, moved with the following steps:
```
rm lldb/test/API/testcases
mkdir -p lldb/test/API/{test_runner/test,tools/lldb-{server,vscode}}
mv lldb/packages/Python/lldbsuite/test/test_runner/test lldb/test/API/test_runner
for d in $(find lldb/packages/Python/lldbsuite/test/* -maxdepth 0 -type d | egrep -v "make|plugins|test_runner|tools"); do mv $d lldb/test/API; done
for d in $(find lldb/packages/Python/lldbsuite/test/tools/lldb-vscode -maxdepth 1 -mindepth 1 | grep -v ".py"); do mv $d lldb/test/API/tools/lldb-vscode; done
for d in $(find lldb/packages/Python/lldbsuite/test/tools/lldb-server -maxdepth 1 -mindepth 1 | egrep -v "gdbremote_testcase.py|lldbgdbserverutils.py|socket_packet_pump.py"); do mv $d lldb/test/API/tools/lldb-server; done
```
lldb/packages/Python/lldbsuite/__init__.py and lldb/test/API/lit.cfg.py were also updated with the new directory structure.
Reviewers: labath, JDevlieghere
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71151