for any reason, use debugserver own's cputype as a best guess when
we reply to the debugger's qProcessInfo packet or when initializing
our register tables.
<rdar://problem/13406879>
llvm-svn: 184829
325,000 breakpoints for running "breakpoint set --func-regex ." on lldb itself (after hitting a breakpoint at main so that LLDB.framework is loaded) used to take up to an hour to set, now we are down under a minute. With warm file caches, we are at 40 seconds, and that is with setting 325,000 breakpoint through the GDB remote API. Linux and the native debuggers might be faster. I haven't timed what how much is debug info parsing and how much is the protocol traffic to/from GDB remote.
That there were many performance issues. Most of them were due to storing breakpoints in the wrong data structures, or using the wrong iterators to traverse the lists, traversing the lists in inefficient ways, and not optimizing certain function name lookups/symbol merges correctly.
Debugging after that is also now very efficient. There were issues with replacing the breakpoint opcodes in memory that was read, and those routines were also fixed.
llvm-svn: 183820
number in RNBRemote::HandlePacket_qProcessInfo -- add a new
GetCurrentThreadMachPort() so callers who need to make a mach
thred_get_state() call at the RNBRemote level will have a way to
get the port number.
llvm-svn: 178619
Drop the old f registers from debugserver's register list. Add the
NEON 128-bit q registers to debugserver, support reading and writing.
Add the new contains / invalidates mappings for the s, d, and q
registers so lldb will know what registers overlay what other registers.
Change the default format of s and d registers to be floating point
instead of hex. Remove some UTF-8 hyphen chars in comments in the ARM
register number definition headers.
<rdar://problem/13121797>
llvm-svn: 176915
Make it configurable what to profile.
For Mac, we don't use the dirty page size yet and hence there is no need to gather that. This should be way better in not draining the battery since we are operating between 0% to 0.1% on the Mac after this change.
llvm-svn: 176451
reply to be hex encoded, not decimal.
Fix the whitespace in the container-regs/invalidate-regs
documentation, fix one ambiguous hex/decimal number in an
example.
llvm-svn: 173225
Fixed the 32, 16, and 8 bit pseudo regs for x86_64 (real reg of "rax" which subvalues "eax", "ax", etc...) to correctly get updated when stepping. Also fixed it so actual registers can specify what other registers must be invalidated when a register is modified. Previously, only pseudo registers could invalidate other registers.
Modified the LLDB qRegisterInfo extension to the GDB remote interface to support specifying the containing registers with the new "container-regs" key whose value is a comma separated list of register numbers. Also added a "invalidate-regs" key whose value is also a comma separated list of register numbers.
Removed the hack GDBRemoteDynamicRegisterInfo::Addx86_64ConvenienceRegisters() function and modified "debugserver" to specify the registers correctly using the new "container-regs" and "invalidate-regs" keys.
llvm-svn: 173096
Prevent profiling from working on older debugserver. Just a simple renaming since the caller is prepared to handle the ‘unimplemented’ answer.
llvm-svn: 172583
document some simple bourne shell to re-generate these from the DNBDefs.h
header file in case this needs to be done again in the future.
llvm-svn: 172494
Update the debugserver "qProcessInfo" implementation to return the
cpu type, cpu subtype, OS and vendor information just like qHostInfo
does so lldb can create an ArchSpec based on the returned values.
Add a new GetProcessArchitecture to GDBRemoteCommunicationClient akin
to GetHostArchitecture. If the qProcessInfo packet is supported,
GetProcessArchitecture will return the cpu type / subtype of the
process -- e.g. a 32-bit user process running on a 64-bit x86_64 Mac
system.
Have ProcessGDBRemote set the Target's architecture based on the
GetProcessArchitecture when we've completed an attach/launch/connect.
llvm-svn: 170491
This can be used by lldb to ask for information
about the process debugserver is attached to/launched.
Particularly useful on a 64-bit x86 Mac system which
can run 32-bit or 64-bit user-land processes.
llvm-svn: 170409
Prevent async and sync calls to get profile data from stomping on each other.
At the same time, don't use '$' as end delimiter per chunk of profile data.
llvm-svn: 168948
Fixed an issue where if we call "Process::Destroy()" and the process is running, if we try to stop it and get "exited" back as the stop reason, we will still deliver the exited event.
llvm-svn: 163591
calling functions. This is necessary on Mac OS X, since bad things can happen if you set
the registers of a thread that's sitting in a kernel trap.
<rdar://problem/11145013>
llvm-svn: 160756
Add default Process::GetWatchpointSupportInfo() impl which returns an error of "not supported".
Add "qWatchpointSupportInfo" packet to the gdb communication layer to support this, and modify TestWatchpointCommands.py to test it.
llvm-svn: 157345
Switch over to the "*-apple-macosx" for desktop and "*-apple-ios" for iOS triples.
Also make the selection process for auto selecting platforms based off of an arch much better.
llvm-svn: 156354
QListThreadsInStopReply
This GDB remote query command can enable added a "threads" key/value pair to all stop reply packets so that we always get a list of all threads in each stop reply packet. It increases performance if enabled (the reply to the "QListThreadsInStopReply" is "OK") by saving us from sending to command/reply pairs (the "qfThreadInfo" and "qsThreadInfo" packets), and also helps us keep the current process state up to date.
llvm-svn: 154380
We will return a valid range when possible and omit the "permissions" key
when the memory is not readable, writeable or executeable. This will help us
know the difference between an error back from this packet and unsupported,
from just "this address isn't in a valid region".
llvm-svn: 146394
from a process and hooked it up to the new packet that was recently added
to our GDB remote executable named debugserver. Now Process has the following
new calls:
virtual Error
Process::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info);
virtual uint32_t
GetLoadAddressPermissions (lldb::addr_t load_addr);
Only the first one needs to be implemented by subclasses that can add this
support.
Cleaned up the way the new packet was implemented in debugserver to be more
useful as an API inside debugserver. Also found an error where finding a region
for an address actually will pick up the next region that follows the address
in the query so we also need ot make sure that the address we requested the
region for falls into the region that gets returned.
llvm-svn: 144976
Add a more general purpose qMemoryRegionInfo packet which can
describe various attributes about a memory region. Currently it
will return the start address, size, and permissions (read, write,
executable) for the memory region. It may be possible to add
additional attributes in the future such as whether the region is
designated as stack memory or jitted code a la vmmap.
I still haven't implemented the lldb side of the code to use this
packet yet so there may be unexpected behavior - but the basic implementation looks
about right. I'll hook it up to lldb soon and fix any problems that crop up.
llvm-svn: 144175
whether a given address is in an executable region of memory or
not. I haven't written the lldb side that will use this packet it
hasn't been tested yet but it's a simple enough bit of code.
I want to have this feature available for the unwinder code. When
we're stopped at an address with no valid symbol context, there are
a number of questions I'd like to ask --
is the current pc value in an executable region (e.g. did they
jump to unallocated/unexecutable memory? we know how to unwind
from here if so.)
Is the stack pointer or the frame pointer the correct register
to use to find the caller's saved pc value?
Once we're past the first frame we can trust things like eh_frame
and ABI unwind schemes but the first frame is challenging and having
a way to check potential addresses to see if they're executable or
not would help narrow down the possibilities a lot.
llvm-svn: 144074
(MachThreadList::EnableHardwareWatchpoint()) where the watchpoint is not associated
with a thread and the current thread, if set, is returned, otherwise we return the
first thread.
Plus minor change to RNBRemote::HandlePacket_z() to use the existing macros to check
the validity of break_id/watch_id.
llvm-svn: 139246
the pid of the process currently being debugged by debugserer in
hex, or 0 if unavailable.
This is effectively the same as the qC packet but that packet is
not clear in either its documentation or implementation (in gdb et al)
as to whether it is intended to return a pid or a thread id. qGetPid
is unambiguous.
If qGetPid is unimplemented in the remote debugserver, the debugger may
try qC and see what kind of value is returned..
llvm-svn: 136055
arguments in hex-encoded form instead of the old QEnvironment packet
which takes them as plain-text strings. Environment variables
containing remote protocol special chars like '#' would fail to set
with QEnvironment.
llvm-svn: 133857
parse NOP instructions. I added the new table entries for the NOP for the
plain NOP, Yield, WFE, WFI, and SEV variants. Modified the opcode emulation
function EmulateInstructionARM::EmulateMOVRdSP(...) to notify us when it is
creating a frame. Also added an abtract way to detect the frame pointer
register for both the standard ARM ABI and for Darwin.
Fixed GDBRemoteRegisterContext::WriteAllRegisterValues(...) to correctly be
able to individually write register values back if case the 'G' packet is
not implemented or returns an error.
Modified the StopInfoMachException to "trace" stop reasons. On ARM we currently
use the BVR/BCR register pairs to say "stop when the PC is not equal to the
current PC value", and this results in a EXC_BREAKPOINT mach exception that
has 0x102 in the code.
Modified debugserver to create the short option string from long option
definitions to make sure it doesn't get out of date. The short option string
was missing many of the newer short option values due to a modification of
the long options defs, and not modifying the short option string.
llvm-svn: 131911
and set the address as an opcode address or as a callable address. This is
needed in various places in the thread plans to make sure that addresses that
might be found in symbols or runtime might already have extra bits set (ARM/Thumb).
The new functions are:
bool
Address::SetCallableLoadAddress (lldb::addr_t load_addr, Target *target);
bool
Address::SetOpcodeLoadAddress (lldb::addr_t load_addr, Target *target);
SetCallableLoadAddress will initialize a section offset address if it can,
and if so it might possibly set some bits in the address to make the address
callable (bit zero might get set for ARM for Thumb functions).
SetOpcodeLoadAddress will initialize a section offset address using the
specified target and it will strip any special address bits if needed
depending on the target.
Fixed the ABIMacOSX_arm::GetArgumentValues() function to require arguments
1-4 to be in the needed registers (previously this would incorrectly fallback
to the stack) and return false if unable to get the register values. The
function was also modified to first look for the generic argument registers
and then fall back to finding the registers by name.
Fixed the objective trampoline handler to use the new Address::SetOpcodeLoadAddress
function when needed to avoid address mismatches when trying to complete
steps into objective C methods. Make similar fixes inside the
AppleThreadPlanStepThroughObjCTrampoline::ShouldStop() function.
Modified ProcessGDBRemote::BuildDynamicRegisterInfo(...) to be able to deal with
the new generic argument registers.
Modified RNBRemote::HandlePacket_qRegisterInfo() to handle the new generic
argument registers on the debugserver side.
Modified DNBArchMachARM::NumSupportedHardwareBreakpoints() to be able to
detect how many hardware breakpoint registers there are using a darwin sysctl.
Did the same for hardware watchpoints in
DNBArchMachARM::NumSupportedHardwareWatchpoints().
llvm-svn: 131834
a new "QLaunchArch:<arch-name>" where <arch-name> is the architecture name.
This allows us to remotely launch a debugserver and then set the architecture
for the binary we will launch.
llvm-svn: 131064
Removed the "image" command and moved it to "target modules". Added an alias
for "image" to "target modules".
Added some new target commands to be able to add and load modules to a target:
(lldb) target modules add <path>
(lldb) target modules load [--file <path>] [--slide <offset>] [<sect-name> <sect-load-addr> ...]
So you can load individual sections without running a target:
(lldb) target modules load --file /usr/lib/libSystem.B.dylib __TEXT 0x7fccc80000 __DATA 0x1234000000
Or you can rigidly slide an entire shared library:
(lldb) target modules load --file /usr/lib/libSystem.B.dylib --slid 0x7fccc80000
This should improve bare board debugging when symbol files need to be slid around manually.
llvm-svn: 130796