This patch should allow the user to set specific auto-completion type
for their custom commands.
To do so, we had to hoist the `CompletionType` enum so the user can
access it and add a new completion type flag to the CommandScriptAdd
Command Object.
So now, the user can specify which completion type will be used with
their custom command, when they register it.
This also makes the `crashlog` custom commands use disk-file completion
type, to browse through the user file system and load the report.
Differential Revision: https://reviews.llvm.org/D152011
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
This should be last of the "bottom-up conversions" of various demanglers
to accept std::string_view. After this, D149104 may be revisited.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D152176
I was doing this API conversion to use std::string_view top-down in
D149104, but this exposed issues in individual demanglers that needed to
get fixed first. There's no issue with the conversion for the D language
demangler, so convert it.
I have a more aggressive refactoring of the entire D language demangler
to use std::string_view more extensively, but the interface with
llvm::nonMicrosoftDemangle is the more interesting one.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D151003
I was doing this API conversion to use std::string_view top-down in
D149104, but this exposed issues in individual demanglers that needed to
get fixed first. There's no issue with the conversion for the Rust
demangler, so convert it first.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D149784
Following D151810, this changes `GetChildAtNamePath` to take a path of `StringRef`
values instead of `ConstString`.
Differential Revision: https://reviews.llvm.org/D151813
As with D151615, which changed `GetIndexOfChildMemberWithName` to take a `StringRef`
instead of a `ConstString`, this change does the same for `GetIndexOfChildWithName`.
Differential Revision: https://reviews.llvm.org/D151811
`GetChildMemberWithName` does not need a `ConstString`. This change makes the function
take a `StringRef` instead, which alleviates the need for callers to construct a
`ConstString`. I don't expect this change to improve performance, only ergonomics.
This is in support of Alex's effort to replace `ConstString` where appropriate.
There are related `ValueObject` functions that can also be changed, if this is accepted.
Differential Revision: https://reviews.llvm.org/D151615
In ProcessMachCore::LoadBinariesViaMetadata(), if we did
load some binaries via metadata in the core file, don't
then search for a userland dyld in the corefile / kernel
and throw away that binary list. Also fix a little bug
with correctly recognizing corefiles using a `main bin spec`
LC_NOTE that explicitly declare that this is a userland
corefile.
LocateSymbolFileMacOSX.cpp's Symbols::DownloadObjectAndSymbolFile
clarify the comments on how the force_lookup and how the
dbgshell_command local both have the same effect.
In PlatformDarwinKernel::LoadPlatformBinaryAndSetup, don't
log a message unless we actually found a kernel fileset.
Reorganize ObjectFileMachO::LoadCoreFileImages so that it delegates
binary searching to DynamicLoader::LoadBinaryWithUUIDAndAddress and
doesn't duplicate those searches. For searches that fail, we would
perform them multiple times in both methods. When we have the
mach-o segment vmaddrs for a binary, don't let LoadBinaryWithUUIDAndAddress
load the binary first at its mach-o header address in the Target;
we'll load the segments at the correct addresses individually later
in this method.
DynamicLoaderDarwin::ImageInfo::PutToLog fix a LLDB_LOG logging
formatter.
In DynamicLoader::LoadBinaryWithUUIDAndAddress, instead of using
Target::GetOrCreateModule as a way to find a binary already registered
in lldb's global module cache (and implicitly add it to the Target
image list), use ModuleList::GetSharedModule() which only searches
the global module cache, don't add it to the Target. We may not
want to add an unstripped binary to the Target.
Add a call to Symbols::DownloadObjectAndSymbolFile() even if
"force_symbol_search" isn't set -- this will turn into a
DebugSymbols call / Spotlight search on a macOS system, which
we want.
Only set the Module's LoadAddress if the caller asked us to do that.
Differential Revision: https://reviews.llvm.org/D150928
rdar://109186357
This doesn't need to be in the ConstString StringPool. There's little
benefit to having these be unique, and we don't need fast comparisons on
them.
Differential Revision: https://reviews.llvm.org/D151524
This reverts commit c46d9af26c.
Rename the variable to avoid `-Wchanges-meaning` warning. Although, it
might be better to squelch the warning as it is of low value IMO.
This patch refactors the `StructuredData::Integer` class to make it
templated, makes it private and adds 2 public specialization for both
`int64_t` & `uint64_t` with a public type aliases, respectively
`SignedInteger` & `UnsignedInteger`.
It adds new getter for signed and unsigned interger values to the
`StructuredData::Object` base class and changes the implementation of
`StructuredData::Array::GetItemAtIndexAsInteger` and
`StructuredData::Dictionary::GetValueForKeyAsInteger` to support signed
and unsigned integers.
This patch also adds 2 new `Get{Signed,Unsigned}IntegerValue` to the
`SBStructuredData` class and marks `GetIntegerValue` as deprecated.
Finally, this patch audits all the caller of `StructuredData::Integer`
or `StructuredData::GetIntegerValue` to use the proper type as well the
various tests that uses `SBStructuredData.GetIntegerValue`.
rdar://105575764
Differential Revision: https://reviews.llvm.org/D150485
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
Value::ValueType is a superset of AddressType. Add a function to
convert an AddressType into a Value::ValueType.
Differential Revision: https://reviews.llvm.org/D150826
DissassemblerCreateInstance is a function pointer whos return type is
`Disassembler *`. But Disassembler::FindPlugin always returns a
DisassemblerSP, so there's no reason why we can't just create a
DisassemblerSP in the first place.
Differential Revision: https://reviews.llvm.org/D150235
selecting the "Most relevant" frame.
If you don't do that, then the correct frame gets selected, but it
happens AFTER the frame info gets printed in the stop message, so
you don't see the selected frame.
The test for this hid the issue because it ran `frame info` and
checked the result of that. That happens after the recognizer selects
the frame, and so it was right. But if the recognizer is working
correctly it will have already done the same printing in the stop
message, and this way we also verify that the stop message was right.
Differential Revision: https://reviews.llvm.org/D150315
Re-lands 04aa943be8 with modifications
to fix tests.
I originally reverted this because it caused a test to fail on Linux.
The problem was that I inverted a condition on accident.
Use templates to simplify {Get,Set}PropertyAtIndex. It has always
bothered me how cumbersome those calls are when adding new properties.
After this patch, SetPropertyAtIndex infers the type from its arguments
and GetPropertyAtIndex required a single template argument for the
return value. As an added benefit, this enables us to remove a bunch of
wrappers from UserSettingsController and OptionValueProperties.
Differential revision: https://reviews.llvm.org/D149774
There are many situations where we'll iterate over a SymbolContextList
with the pattern:
```
SymbolContextList sc_list;
// Fill in sc_list here
for (auto i = 0; i < sc_list.GetSize(); i++) {
SymbolContext sc;
sc_list.GetSymbolAtContext(i, sc);
// Do work with sc
}
```
Adding an iterator to iterate over the instances directly means we don't
have to do bounds checking or create a copy of every element of the
SymbolContextList.
Differential Revision: https://reviews.llvm.org/D149900
The majority of call sites are nullptr as the execution context.
Refactor OptionValueProperties to make the argument optional and
simplify all the callers.
Various OptionValue related classes are passing around will_modify but
the value is never used. This patch simplifies the interfaces by
removing the redundant argument.
Similar to fdbe7c7faa, refactor OptionValueProperties to return a
std::optional instead of taking a fail value. This allows the caller to
handle situations where there's no value, instead of being unable to
distinguish between the absence of a value and the value happening the
match the fail value. When a fail value is required,
std::optional::value_or() provides the same functionality.
Refactor OptionValue to return a std::optional instead of taking a fail
value. This allows the caller to handle situations where there's no
value, instead of being unable to distinguish between the absence of a
value and the value happening the match the fail value. When a fail
value is required, std::optional::value_or() provides the same
functionality.
llvm has a structure for maps where the key's type is a string. Using
that also means that the keys for OptionValueDictionary don't stick
around forever in ConstString's StringPool (even after they are gone).
The only thing we lose here is ordering: iterating over the map where the keys
are ConstStrings guarantees that we iterate in alphabetical order.
StringMap makes no guarantees about the ordering when you iterate over
the entire map.
Differential Revision: https://reviews.llvm.org/D149482
Add a new setting (debugger.external-editor) to specify an external
editor. The setting takes precedence over the existing
LLDB_EXTERNAL_EDITOR environment variable.
Differential revision: https://reviews.llvm.org/D149565
This generalises the GetXcodeSDKPath hook to a GetSDKRoot path which
will be re-used for the Windows support to compute a language specific
SDK path on the platform. Because there may be other options that we
wish to use to compute the SDK path, sink the XcodeSDK parameter into
a structure which can pass a disaggregated set of options. Furthermore,
optionalise the parameter as Xcode is not available for all platforms.
Differential Revision: https://reviews.llvm.org/D149397
Reviewed By: JDevlieghere
These don't really need to be in ConstStrings. It's nice that comparing
ConstStrings is fast (just a pointer comparison) but the cost of
creating the ConstString usually already includes the cost of doing a
StringRef comparison anyway, so this is just extra work and extra memory
consumption for basically no benefit.
Differential Revision: https://reviews.llvm.org/D149300
This is a user facing action, it is meant to focus the user's attention on
something other than the 0th frame when you stop somewhere where that's
helpful. For instance, stopping in pthread_kill after an assert will select
the assert frame.
This is not something you want to have happen internally in lldb, both
because internally you really don't want the selected frame changing out
from under you, and because the recognizers can do arbitrary work, and that
can cause deadlocks or other unexpected behavior.
However, it's not something that the current code does
explicitly after a stop has been delivered, it's expected to happen implicitly
as part of stopping. I changing this to call SMRF explicitly after a user
stop, but that got pretty ugly quickly.
So I added a bool to control whether to run this and audited all the current
uses to determine whether we're returning to the user or not.
Differential Revision: https://reviews.llvm.org/D148863
We have a handful of places in LLDB where we try to outsmart the logic
in Mangled to determine whether a string is mangled or not. There's at
least one place (*) where we are getting this wrong and causes a subtle
bug. The `cstring_is_mangled` is cheap enough that we should always rely
on it to determine whether a string is mangled or not.
(*) `ObjectFileMachO` assumes that a symbol that starts with a double
underscore (such as `__pthread_kill`) is mangled. That's mostly
harmless, until you use `function.name-without-args` in the frame
format. The formatter calls `Symbol::GetNameNoArguments()` which is a
wrapper around `Mangled::GetName(ePreferDemangledWithoutArguments)`. The
latter will first try using the appropriate language plugin to get the
demangled name without arguments, and if that fails, falls back to
returning the demangled name. Because we forced Mangled to treat the
symbol as a mangled name (even though it's not) there's no demangled
name. The result is that frames don't show any symbol at all.
Differential revision: https://reviews.llvm.org/D148846
These probably do not need to be in the ConstString StringPool as they
don't really need any of the advantages that ConstStrings offer.
Lifetime for these things is always static and we never need to perform
comparisons for setting descriptions.
Differential Revision: https://reviews.llvm.org/D148679
7978abd5ae fixed a build issue
on MSVC with some code I previously added, by adding some
ifdefs.
Now I realise that I should have been using llvm::byteswap
in the first place, which does exactly that.
The `__builtin_bswap{32,64}()` builtins (introduced in commit e07a421d)
are missing from MSVC, which causes build errors when compiling LLDB on
Windows (tested with MSVC 19.34.31943.0). This patch replaces the
builtins with either MSVC's `_byteswap_u{long,64}()` or the original
builtins, or the `bswap_{32,64}()` functions from byteswap.h, depending
on which ones are available.
Reviewed By: bulbazord
Differential Revision: https://reviews.llvm.org/D148541
Add a `StringRef` conversion function to `ConstString`.
This will make using llvm, and other non-ConstString, APIs more convenient.
For demonstration, this updates Module.cpp.
Differential Revision: https://reviews.llvm.org/D148175
This patch adds support for creating modules from JSON object files.
This is necessary for the crashlog use case where we don't have either a
module or a symbol file. In that case the ObjectFileJSON serves as both.
The patch adds support for an object file type (i.e. executable, shared
library, etc). It also adds the ability to specify sections, which is
necessary in order specify symbols by address. Finally, this patch
improves error handling and fixes a bug where we wouldn't read more than
the initial 512 bytes in GetModuleSpecifications.
Differential revision: https://reviews.llvm.org/D148062
This change uses the information from target.xml sent by
the GDB stub to produce C types that we can use to print
register fields.
lldb-server *does not* produce this information yet. This will
only work with GDB stubs that do. gdbserver or qemu
are 2 I know of. Testing is added that uses a mocked lldb-server.
```
(lldb) register read cpsr x0 fpcr fpsr x1
cpsr = 0x60001000
= (N = 0, Z = 1, C = 1, V = 0, TCO = 0, DIT = 0, UAO = 0, PAN = 0, SS = 0, IL = 0, SSBS = 1, BTYPE = 0, D = 0, A = 0, I = 0, F = 0, nRW = 0, EL = 0, SP = 0)
```
Only "register read" will display fields, and only when
we are not printing a register block.
For example, cpsr is a 32 bit register. Using the target's scratch type
system we construct a type:
```
struct __attribute__((__packed__)) cpsr {
uint32_t N : 1;
uint32_t Z : 1;
...
uint32_t EL : 2;
uint32_t SP : 1;
};
```
If this register had unallocated bits in it, those would
have been filled in by RegisterFlags as anonymous fields.
A new option "SetChildPrintingDecider" is added so we
can disable printing those.
Important things about this type:
* It is packed so that sizeof(struct cpsr) == sizeof(the real register).
(this will hold for all flags types we create)
* Each field has the same storage type, which is the same as the type
of the raw register value. This prevents fields being spilt over
into more storage units, as is allowed by most ABIs.
* Each bitfield size matches that of its register field.
* The most significant field is first.
The last point is required because the most significant bit (MSB)
being on the left/top of a print out matches what you'd expect to
see in an architecture manual. In addition, having lldb print a
different field order on big/little endian hosts is not acceptable.
As a consequence, if the target is little endian we have to
reverse the order of the fields in the value. The value of each field
remains the same. For example 0b01 doesn't become 0b10, it just shifts
up or down.
This is needed because clang's type system assumes that for a struct
like the one above, the least significant bit (LSB) will be first
for a little endian target. We need the MSB to be first.
Finally, if lldb's host is a different endian to the target we have
to byte swap the host endian value to match the endian of the target's
typesystem.
| Host Endian | Target Endian | Field Order Swap | Byte Order Swap |
|-------------|---------------|------------------|-----------------|
| Little | Little | Yes | No |
| Big | Little | Yes | Yes |
| Little | Big | No | Yes |
| Big | Big | No | No |
Testing was done as follows:
* Little -> Little
* LE AArch64 native debug.
* Big -> Little
* s390x lldb running under QEMU, connected to LE AArch64 target.
* Little -> Big
* LE AArch64 lldb connected to QEMU's GDB stub, which is running
an s390x program.
* Big -> Big
* s390x lldb running under QEMU, connected to another QEMU's GDB
stub, which is running an s390x program.
As we are not allowed to link core code to plugins directly,
I have added a new plugin RegisterTypeBuilder. There is one implementation
of this, RegisterTypeBuilderClang, which uses TypeSystemClang to build
the CompilerType from the register fields.
Reviewed By: jasonmolenda
Differential Revision: https://reviews.llvm.org/D145580
There's no reason these strings need to be in the ConstString
StringPool, they're already string literals with static lifetime.
I plan on addressing other similar functions in follow up commits.
Differential Revision: https://reviews.llvm.org/D147833
Non-plugin lldb libraries should generally not be linking against lldb
plugin libraries. Enforce this in CMake.
Differential Revision: https://reviews.llvm.org/D146553