This reverts commit 02369b75fd.
At the moment, live-outs used *only* for the resume values in the scalar
loop are not modeled in VPlan yet. This means first-order recurrence
recipes could be removed, when a scalar epilogue is required and the
only use of a FOR is outside the loop.
Keep treating recurrence recipes as having side-effects for now, to
avoid them being removed.
Fixes#62954.
This patch uses SCEV to check if a value is uniform across a given VF.
The basic idea is to construct SCEVs where the AddRecs of the loop are
adjusted to reflect the version in the vectorized loop (Step multiplied
by VF). We construct a SCEV for the value of the vector lane 0
(offset 0) compare it to the expressions for lanes 1 to the last vector
lane (VF - 1). If they are equal, consider the expression uniform.
While re-writing expressions, we also need to catch expressions we
cannot determine uniformity (e.g. SCEVUnknown).
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D148841
This is a follow-up to b71edfaa4e
since I forgot the lit.local.cfg files in that one.
Reformatting is done with `black`.
If you end up having problems merging this commit because you
have made changes to a python file, the best way to handle that
is to run git checkout --ours <yourfile> and then reformat it
with black.
If you run into any problems, post to discourse about it and
we will try to help.
RFC Thread below:
https://discourse.llvm.org/t/rfc-document-and-standardize-python-code-style
Reviewed By: barannikov88, kwk
Differential Revision: https://reviews.llvm.org/D150762
When generating code for the epilogue vector loop, we need to re-use the
expansion results for induction steps generated for the main vector
loop, as the pre-header of the epilogue vector loop may not dominate the
vector preheader of the epilogue.
This fixes a reported crash. Note that this is a workaround which should
be removed soon once induction resume value creation is handled in VPlan
directly.
With this patch an undefined mask in a shufflevector will be printed as poison.
This change is done to support the new shufflevector semantics
for undefined mask elements.
Differential Revision: https://reviews.llvm.org/D149210
Now that we store the ScalarCost in the VectorizationFactor it is possible to
use it to get a slightly more accurate cost in isMoreProfitable between two
vector factors. This extends the logic added in D101726 to non-tail-folded
cases, using the costs of `VecCost * (TripCount / VF) + ScalarCost * (TripCount % VF)`
to compare VFs where the TripCount is known and we are not folding the tail.
This shouldn't alter very much as small trip counts are usually not vectorized,
but does seem to help in the testcase where 4 * VF4 is chosen as profitable
compared to 2 * VF8 + 4 * scalar.
Differential Revision: https://reviews.llvm.org/D147720
Since D146813, LICM will reassociate GEPs to expose hoisting
opportunities itself. Don't perform this transform in InstCombine,
where it is fragile because it depends on an optional LoopInfo
analysis.
To calculate the trip count we need to add 1 to the backedge
taken count. If we need to widen the backedge count, it's better
to do the add before the widening if we can guarantee it won't
overflow.
The code here is based on similar code I found in
LoopIdiomRecognize.
This is the vectorizer version of this InstCombine patch D142783.
Looking at the IR diffs, this does look like it gets more cases
than the InstCombine patch.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D147355
Move the code to collect live-out earlier and only generate extracts for
exit values if there are any live-outs that use them.
Depends on D147472.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D147567
Extend handling to support `%base + offset` as start for AddRecs in
isDereferenceableAndAlignedInLoop. This is done by adjusting AccessSize
by the offset and effectively checking if the full object starting from
%base to %base + offset + access-size is dereferenceable.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D147260
Use existing functionality for identifying total access size by strided
loads. If we can speculate the load across all vector iterations, we can
avoid predication for these strided loads (or masked gathers in
architectures which support it).
Differential Revision: https://reviews.llvm.org/D145616
This is the follow-up to D144199 and suggestion from D144045.
We make use of loop info explicit via InstCombine pass parameter
rather than semi-arbitrary via caching.
The only InstCombine transform that uses LoopInfo currently is a
GEP fold in visitGEPOfGEP(), so that shows up as a failure in the
dedicated test for the fold as well as several LoopVectorizer tests
that run extra passes.
I don't see any pass manager regression tests that actually check
for pass options, but this is intended to be NFC for the pass
pipeline behavior - we only try to use loop info where it would
have been used before via caching .
Differential Revision: https://reviews.llvm.org/D144274
This patch adds the predicate as additional operand to VPReplicateRecipe
during initial construction. The predicated recipes are later moved into
replicate regions. This simplifies constructions and some VPlan
transformations, like fixed-order recurrence handling.
It also improves codegen in some cases (e.g. for in-loop reductions),
because the recipes remain in the same block.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D143865
Previously, while calculating register usage due to invariants, it was assumed that invariant would always be part of widening
instructions. This resulted in calculating vector register types for vectors which cant be legalized(check the newly added test for more details).
An invariant might not always need a vector register. For e.g., invariant might just be used for iteration check.
This patch checks if the invariant is part of any widening instruction and considers register usage accordingly. Fixes issue 60493
Differential Revision: https://reviews.llvm.org/D143422
Previously, while calculating register usage due to invariants, it was assumed that invariant would always be part of widening
instructions. This resulted in calculating vector register types for vectors which cant be legalized(check the newly added test for more details).
An invariant might not always need a vector register. For e.g., invariant might just be used for iteration check.
This patch checks if the invariant is part of any widening instruction and considers register usage accordingly. Fixes issue 60493
Differential Revision: https://reviews.llvm.org/D143422
Update a few tests to add users to loads to avoid them being optimized
out by future changes. In cases the unused loads didn't matter for the
test, remove them.
This artifact can appear from the vectorizer. (add X, -1) is the
backedge taken count. It gets zero extended and then 1 is added to
it to get the trip count.
There is usually a dominating branch that rules out X being zero.
Alive: https://alive2.llvm.org/ce/z/NsRDwX
IR is now always parsed in opaque pointer mode, unless
-opaque-pointers=0 is explicitly given. There is no automatic
detection of typed pointers anymore.
The -opaque-pointers=0 option is added to any remaining IR tests
that haven't been migrated yet.
Differential Revision: https://reviews.llvm.org/D141912
Instcombine prefers this canonical form (see getPreferredVectorIndex),
as does IRBuilder when passing the index as an integer so we may as
well use the prefered form from creation.
NOTE: All test changes are mechanical with nothing else expected
beyond a change of index type from i32 to i64.
Differential Revision: https://reviews.llvm.org/D140983
This patch adds metadata to disable runtime unrolling to the vectorized
loop. If runtime unrolling/interleaving is considered profitable, LV
will interleave the loop directly. There should be no need to perform
runtime unrolling at a later stage.
Note that we already add metadata to disable runtime unrolling to the
scalar loop after vectorization.
The additional unrolling unnecessarily increases code size and compile
time. In addition to that we have several bug reports of unncessary
runtime unrolling for vectorized loops, e.g. PR40961
Compile-time improvements:
NewPM-O3: -1.04%
NewPM-ReleaseThinLTO: -0.59%
NewPM-ReleaseLTO-g: -0.97%
https://llvm-compile-time-tracker.com/compare.php?from=ce1be13a868d0f8afa367975558c1a6175cce33a&to=78bc2e67f22e9e10e61cdb6cdac4bb857d95eb1b&stat=instructions:uFixes#40306.
Reviewed By: lebedev.ri, nikic
Differential Revision: https://reviews.llvm.org/D115261
Check lines for some of these tests were regenerated. The difference
is that with opaque pointers SCEVExpander always emits i8 GEPs,
making the address calculation explicit. This is a known problem
that will be solved long term by making all address calculations
explicit.
Code generation now uses the start VPValue of induction recipes.
This makes it possible to adjust the start value of the epilogue
vector loop to use the 'resume' value of the main vector loop.
Fixes#59459.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D92132
A few more that I missed in commit 3528e63d89.
There could be more duplicates remaining, since I've only focused
on exactly duplicated "RUN: opt" lines (ignoring multi line RUN
lines ending with '\').
StoredValues only has entries for members of the interleave group. If
there are gaps, then using the index i here will either access a wrong
entry or be out-of-bounds.
Instead use a dedicated index that only gets incremented for members of
the interleave group.
Fixes#59090.
All of our insert/extract ops work on 128-bit lanes.
For `Insert`, we need to extract affected 128-bit lane,
unless it's being fully overwritten (FIXME: do we need to be
careful about legalization-induced padding that we obviously don't demand?),
perform insertions, and then insert the 128-bit lane back.
But hold on. If we are operating on an 256-bit legal vector,
and thus have two 128-bit subvectors, and are fully overwriting them both,
we don't actually need to insert *both* subvectors,
only the second one, into the implicitly-widened first one.
Also, `Insert` wasn't actually querying the costs,
but just assuming them to be `1`.
`getShuffleCost(TTI::SK_ExtractSubvector)` notes:
```
// Note that in general, the insertion starting at the beginning of a vector
// isn't free, because we need to preserve the rest of the wide vector.
```
... so as far as i can tell, we didn't account for that.
I was hoping this would allow vectorization at a higher VF at one case i looked at,
but the subvector insertion cost is still dis-advising that.
The change for `Extract` is NFC, and is for consistency only,
i wanted to get rid of of that weird explicit discounting of insertion of 0'th element,
since the general code should already deal with that.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D137913
This extends the previously added uniform store case to handle stores of loop varying values to a loop invariant address. Note that the placement of this code only allows unpredicated stores; this is important for correctness. (That is "IsPredicated" is always false at this point in the function.)
This patch does not include scalable types. The diff felt "large enough" as it were; I'll handle that in a separate patch. (It requires some changes to cost modeling.)
Differential Revision: https://reviews.llvm.org/D133580
This mainly just adds costs for the targets where we have actual funnelshift/rotate instructions (VBMI2/XOP etc.) - the cases where we expand still need addressing, although for many the default shift+or expansion, especially for uniform cases, isn't that bad.
This was achieved with the 'cost-tables vs llvm-mca' script D103695