- Don't reset cur_line_offset to llvm::None when we don't have next_line_offset, because we may need to reuse it in new range after a code end.
- Don't use CombineConsecutiveEntriesWithEqualData for inline_site_sp->ranges, because that will combine consecutive entries with same data in the vector regardless of the entry's range. Originally, I thought that it only combine consecutive entries if adjacent entries' ranges are adjoining or intersecting with each other.
Previously, I was assuming that S_DEFRANGE_SUBFIELD_REGISTERs are always in the
increasing order of offset_in_parent until I saw a counter example.
Using `std::map` so that they are sorted by offset_in_parent.
Differential Revision: https://reviews.llvm.org/D124061
When a variable is simple type and has 64 bits, the debug info may look like the following when targeting 32bit windows. The variable's content is split into two 32bits registers.
```
480 | S_LOCAL [size = 12] `x`
type=0x0013 (__int64), flags = param
492 | S_DEFRANGE_SUBFIELD_REGISTER [size = 20]
register = EAX, may have no name = true, offset in parent = 0
range = [0001:0073,+7), gaps = []
512 | S_DEFRANGE_SUBFIELD_REGISTER [size = 20]
register = ECX, may have no name = true, offset in parent = 4
range = [0001:0073,+7), gaps = []
```
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D122943
It fixes the following case:
```
0602 line 1 (+1)
0315 code 0x15 (+0x15)
0B2B code 0x20 (+0xB) line 2 (+1)
0602 line 3 (+1)
0311 code 0x31 (+0x11)
...
```
Inline ranges should have following mapping:
`[0x15, 0x20) -> line 1`
`[0x20, 0x31) -> line 2`
Inline line entries:
`0x15, line 1`, `0x20, line 2`, `0x31, line 3`.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D123092
This creates inline functions decls in the TUs where the funcitons are inlined and local variable decls inside those functions.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D121967
`UdtRecordCompleter` shouldn't complete static members' types. static members' types are going to be completed when the types are called in `SymbolFile::CompleteType`.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D121030
D115300 added Rust as a new PDB language type.
This change allows LLDB to recognize the new language type.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D119044
Major user-facing changes:
Many headers in llvm/DebugInfo/CodeView no longer include
llvm/Support/BinaryStreamReader.h or llvm/Support/BinaryStreamWriter.h,
those headers may need to be included manually.
Several headers in llvm/DebugInfo/CodeView no longer include
llvm/DebugInfo/CodeView/EnumTables.h or llvm/DebugInfo/CodeView/CodeView.h,
those headers may need to be included manually.
Some statistics:
$ clang++ -E -Iinclude -I../llvm/include ../llvm/lib/DebugInfo/CodeView/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
after: 2794466
before: 2832765
Discourse thread on the topic: https://discourse.llvm.org/t/include-what-you-use-include-cleanup/
Differential Revision: https://reviews.llvm.org/D119092
Most of our code was including Log.h even though that is not where the
"lldb" log channel is defined (Log.h defines the generic logging
infrastructure). This worked because Log.h included Logging.h, even
though it should.
After the recent refactor, it became impossible the two files include
each other in this direction (the opposite inclusion is needed), so this
patch removes the workaround that was put in place and cleans up all
files to include the right thing. It also renames the file to LLDBLog to
better reflect its purpose.
This adds inline function support to NativePDB by parsing S_INLINESITE records
to retrieve inlinee line info and add them into line table at `ParseLineTable`.
Differential Revision: https://reviews.llvm.org/D116845
This is a split of D113724. Calling `TypeSystemClang::AddMethodToCXXRecordType`
to create function decls for class methods.
Differential Revision: https://reviews.llvm.org/D113930
I don't see a reason why not to. If we allows lookup functions by full names,
I can change the test case in D113930 to use `lldb-test symbols --find=function --name=full::name --function-flags=full ...`,
though the duplicate method decl prolem is still there for `lldb-test symbols --dump-ast`.
That's a seprate bug, we can fix it later.
Differential Revision: https://reviews.llvm.org/D114467
`image lookup -a ` doesn't work because the compilands list is always empty.
Create CU at given index if doesn't exit.
Differential Revision: https://reviews.llvm.org/D113821
The new key/value pairs that are added to each module's stats are:
"debugInfoByteSize": The size in bytes of debug info for each module.
"debugInfoIndexTime": The time in seconds that it took to index the debug info.
"debugInfoParseTime": The time in seconds that debug info had to be parsed.
At the top level we add up all of the debug info size, parse time and index time with the following keys:
"totalDebugInfoByteSize": The size in bytes of all debug info in all modules.
"totalDebugInfoIndexTime": The time in seconds that it took to index all debug info if it was indexed for all modules.
"totalDebugInfoParseTime": The time in seconds that debug info was parsed for all modules.
Differential Revision: https://reviews.llvm.org/D112501
This adds the `target dump typesystem'`command which dumps the TypeSystem of the
target itself (aka the 'scratch TypeSystem'). This is similar to `target modules
dump ast` which dumps the AST of lldb::Modules associated with a selected
target.
Unlike `target modules dump ast`, the new command is not a subcommand of `target
modules dump` as it's not touching the modules of a target at all. Also unlike
`target modules dump ast` I tried to keep the implementation language-neutral,
so this patch moves our Clang `Dump` to the `TypeSystem` interface so it will
also dump the state of any future/downstream scratch TypeSystems (e.g., Swift).
That's also why the command just refers to a 'typesystem' instead of an 'ast'
(which is only how Clang is necessarily modelling the internal TypeSystem
state).
The main motivation for this patch is that I need to write some tests that check
for duplicates in the ScratchTypeSystemClang of a target. There is currently no
way to check for this at the moment (beside measuring memory consumption of
course). It's probably also useful for debugging LLDB itself.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D111936
There is no reason why this function should be returning a ConstString.
While modifying these files, I also fixed several instances where
GetPluginName and GetPluginNameStatic were returning different strings.
I am not changing the return type of GetPluginNameStatic in this patch, as that
would necessitate additional changes, and this patch is big enough as it is.
Differential Revision: https://reviews.llvm.org/D111877
In all these years, we haven't found a use for this function (it has
zero callers). Lets just remove the boilerplate.
Differential Revision: https://reviews.llvm.org/D109600
This patch refactors a good part of the code base turning the usual
FileSpec, Line, Column, CheckInlines, ExactMatch arguments into a
SourceLocationSpec object.
This change is required for a following patch that will add handling of the
column line information when doing symbol resolution.
Differential Revision: https://reviews.llvm.org/D100965
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
`InsertSequence` doesn't take ownership of the pointer so releasing this pointer
is just leaking memory.
Follow up to D100806 that was fixing other leak sanitizer test failures
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D100846
To get LLDB one step closer to fulfil the software redundancy requirements of
modern aircrafts, we apparently decided to have two separately maintained
implementations of `CreateTypedef` in TypeSystemClang. Let's pass on the idea of
an LLDB-powered jetliner and deleted one implementation.
On a more serious note: This function got duplicated a long time ago when the
idea of CompilerType with a backing TypeSystemClang subclass happened
(56939cb310). One implementation was supposed to
be called from CompilerType::CreateTypedef and the other has just always been
around to create typedefs. By accident one of the implementations is only used
by the PDB parser while the CompilerType::CreateTypedef backend is used by the
rest of LLDB.
We also had some patches over the year that only fixed one of the two functions
(D18099 for example only fixed up the CompilerType::CreateTypedef
implementation). D51162 and D86140 both fixed the same missing `addDecl` call
for one of the two implementations.
This patch:
* deletes the `CreateTypedefType` function as its only used by the PDB parser
and the `CreateTypedef` implementation is anyway needed as it's the backend
implementation of CompilerType.
* replaces the calls in the PDB parser by just calling the CompilerType wrapper.
* moves the documentation to the remaining function.
* moves the check for empty typedef names that was only in the deleted
implementation to the other (I don't think this fixes anything as I believe
all callers are already doing the same check).
I'll fix up the usual stuff (not using StringRef, not doing early exit) in a NFC
follow-up.
This patch is not NFC as the PDB parser now calls the function that has the fix
from D18099.
Reviewed By: labath, JDevlieghere
Differential Revision: https://reviews.llvm.org/D93382
CreateFunctionDeclaration should just take a StringRef. GetDeclarationName is
(only) used by CreateFunctionDeclaration so that's why now also takes a
StringRef.
When loading a PE/COFF target, the associated PDB file often wasn't
found. The executable module contains a path for the associated PDB
file, but people often debug from a different directory than the one
their build system uses. (This is especially common in post-mortem
and cross platform debugging.)
Suppose the COFF executable being debugged is `~/proj/foo.exe`, but
it was built elsewhere and refers to `D:\remote\build\env\foobar.pdb`,
LLDB wouldn't find it.
With this change, if no file exists at the PDB path, LLDB will look
in the executable directory for a PDB file that matches the name of
the one it expected (e.g., `~/proj/foobar.pdb`). If found, the PDB
is subject to the same matching criteria (GUIDs and age) as would
have been used had it been in the original location.
This same-directory-as-the-binary rule is commonly used by debuggers
on Windows.
Differential Review: https://reviews.llvm.org/D84815
This patch has no effect for C and C++. In more dynamic languages,
such as Objective-C and Swift GetByteSize() needs to call into the
language runtime, so it's important to pass one in where possible. My
primary motivation for this is some work I'm doing on the Swift
branch, however, it looks like we are also seeing warnings in
Objective-C that this may resolve. Everything in the SymbolFile
hierarchy still passes in nullptrs, because we don't have an execution
context in SymbolFile, since SymbolFile transcends processes.
Differential Revision: https://reviews.llvm.org/D84267