See [[ https://github.com/llvm/llvm-project/issues/55040 | issue 55040 ]] where static members of classes declared in the anonymous namespace are incorrectly returned as member fields from lldb::SBType::GetFieldAtIndex(). It appears that attrs.member_byte_offset contains a sentinel value for members that don't have a DW_AT_data_member_location.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D124409
Symbol on-demand feature is never tested on Windows so it is not a surprise
that we are getting Buildbot failure from Windows:
https://lab.llvm.org/buildbot/#/builders/83/builds/18228
This patch disables symbol on-demand feature on Windows. I will find a Windows
machine to test and re-enable symbol on-demand feature as follow-up.
Differential Revision: https://reviews.llvm.org/D124471
This diff introduces a new symbol on-demand which skips
loading a module's debug info unless explicitly asked on
demand. This provides significant performance improvement
for application with dynamic linking mode which has large
number of modules.
The feature can be turned on with:
"settings set symbols.load-on-demand true"
The feature works by creating a new SymbolFileOnDemand class for
each module which wraps the actual SymbolFIle subclass as member
variable. By default, most virtual methods on SymbolFileOnDemand are
skipped so that it looks like there is no debug info for that module.
But once the module's debug info is explicitly requested to
be enabled (in the conditions mentioned below) SymbolFileOnDemand
will allow all methods to pass through and forward to the actual SymbolFile
which would hydrate module's debug info on-demand.
In an internal benchmark, we are seeing more than 95% improvement
for a 3000 modules application.
Currently we are providing several ways to on demand hydrate
a module's debug info:
* Source line breakpoint: matching in supported files
* Stack trace: resolving symbol context for an address
* Symbolic breakpoint: symbol table match guided promotion
* Global variable: symbol table match guided promotion
In all above situations the module's debug info will be on-demand
parsed and indexed.
Some follow-ups for this feature:
* Add a command that allows users to load debug info explicitly while using a
new or existing command when this feature is enabled
* Add settings for "never load any of these executables in Symbols On Demand"
that takes a list of globs
* Add settings for "always load the the debug info for executables in Symbols
On Demand" that takes a list of globs
* Add a new column in "image list" that shows up by default when Symbols On
Demand is enable to show the status for each shlib like "not enabled for
this", "debug info off" and "debug info on" (with a single character to
short string, not the ones I just typed)
Differential Revision: https://reviews.llvm.org/D121631
Added implementation to support DWARF5 in monolithic mode.
Next step DWARF5 split dwarf support.
Reviewed By: maksfb
Differential Revision: https://reviews.llvm.org/D121876
Previously, I was assuming that S_DEFRANGE_SUBFIELD_REGISTERs are always in the
increasing order of offset_in_parent until I saw a counter example.
Using `std::map` so that they are sorted by offset_in_parent.
Differential Revision: https://reviews.llvm.org/D124061
When a variable is simple type and has 64 bits, the debug info may look like the following when targeting 32bit windows. The variable's content is split into two 32bits registers.
```
480 | S_LOCAL [size = 12] `x`
type=0x0013 (__int64), flags = param
492 | S_DEFRANGE_SUBFIELD_REGISTER [size = 20]
register = EAX, may have no name = true, offset in parent = 0
range = [0001:0073,+7), gaps = []
512 | S_DEFRANGE_SUBFIELD_REGISTER [size = 20]
register = ECX, may have no name = true, offset in parent = 4
range = [0001:0073,+7), gaps = []
```
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D122943
It fixes the following case:
```
0602 line 1 (+1)
0315 code 0x15 (+0x15)
0B2B code 0x20 (+0xB) line 2 (+1)
0602 line 3 (+1)
0311 code 0x31 (+0x11)
...
```
Inline ranges should have following mapping:
`[0x15, 0x20) -> line 1`
`[0x20, 0x31) -> line 2`
Inline line entries:
`0x15, line 1`, `0x20, line 2`, `0x31, line 3`.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D123092
This creates inline functions decls in the TUs where the funcitons are inlined and local variable decls inside those functions.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D121967
`UdtRecordCompleter` shouldn't complete static members' types. static members' types are going to be completed when the types are called in `SymbolFile::CompleteType`.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D121030
Currently DW_OP_deref_size just drops the ValueType::FileAddress case and does
not attempt to handle it. This adds support for this case and a test that
verifies this support.
I did a little refactoring since DW_OP_deref and DW_OP_deref_size have some
overlap in code.
Also see: rdar://66870821
Differential Revision: https://reviews.llvm.org/D121408
Embedded nul characters are still printed, and they don't terminate the
string. See also D111634.
Differential Revision: https://reviews.llvm.org/D120803
This ensures that the user is aware that many commands will not work
correctly.
We print the warning only once (per module) to avoid spamming the user
with potentially thousands of error messages.
Differential Revision: https://reviews.llvm.org/D120892
This allows `image lookup -a ... -v` to print variables only if the given
address is covered by the valid ranges of the variables. Since variables created
in dwarf plugin always has empty scope range, print the variable if it has
empty scope.
Differential Revision: https://reviews.llvm.org/D119963
In the rush to get the bot green, I did not realize I was building the
file with -gsplit-dwarf, and therefore the yaml ended up referring to a
file I did not check it.
This rebuilds the file without split dwarf.
In D117744, llvm removed writing support for this format, breaking the
test. We may eventually want to remove reading support as well, but for
now I have converted the test to a yaml file to maintain coverage.
This adds inline function support to NativePDB by parsing S_INLINESITE records
to retrieve inlinee line info and add them into line table at `ParseLineTable`.
Differential Revision: https://reviews.llvm.org/D116845
This allows access type be printed when running `lldb-test -dump-ast` and
`lldb-test -dump-clang-ast`.
Differential Revision: https://reviews.llvm.org/D115062
The pdb lldb tests do not work correctly with both the VS2019 and VS2017 toolsets at the moment. This change updates several of the tests to work with both toolsets. Unfortunately, this makes the tests suboptimal for both toolsets, but we can update them to be better for VS2019 once we officially drop VS2017. This change is meant to bridge the gap until the update happens, so that the buildbots can work with either toolset.
Differential Revision: https://reviews.llvm.org/D115482
This is a split of D113724. Calling `TypeSystemClang::AddMethodToCXXRecordType`
to create function decls for class methods.
Differential Revision: https://reviews.llvm.org/D113930
I don't see a reason why not to. If we allows lookup functions by full names,
I can change the test case in D113930 to use `lldb-test symbols --find=function --name=full::name --function-flags=full ...`,
though the duplicate method decl prolem is still there for `lldb-test symbols --dump-ast`.
That's a seprate bug, we can fix it later.
Differential Revision: https://reviews.llvm.org/D114467
This implements the following changes:
* AutoType retains sugared deduced-as-type.
* Template argument deduction machinery analyses the sugared type all the way
down. It would previously lose the sugar on first recursion.
* Undeduced AutoType will be properly canonicalized, including the constraint
template arguments.
* Remove the decltype node created from the decltype(auto) deduction.
As a result, we start seeing sugared types in a lot more test cases,
including some which showed very unfriendly `type-parameter-*-*` types.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith, #libc, ldionne
Differential Revision: https://reviews.llvm.org/D110216
`image lookup -a ` doesn't work because the compilands list is always empty.
Create CU at given index if doesn't exit.
Differential Revision: https://reviews.llvm.org/D113821
This implements the following changes:
* AutoType retains sugared deduced-as-type.
* Template argument deduction machinery analyses the sugared type all the way
down. It would previously lose the sugar on first recursion.
* Undeduced AutoType will be properly canonicalized, including the constraint
template arguments.
* Remove the decltype node created from the decltype(auto) deduction.
As a result, we start seeing sugared types in a lot more test cases,
including some which showed very unfriendly `type-parameter-*-*` types.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D110216
Teach LLDB to understand INLINE and INLINE_ORIGIN records in breakpad.
They have the following formats:
```
INLINE inline_nest_level call_site_line call_site_file_num origin_num [address size]+
INLINE_ORIGIN origin_num name
```
`INLNIE_ORIGIN` is simply a string pool for INLINE so that we won't have
duplicated names for inlined functions and can show up anywhere in the symbol
file.
`INLINE` follows immediately after `FUNC` represents the ranges of momery
address that has functions inlined inside the function.
Differential Revision: https://reviews.llvm.org/D113330
Since every FUNC record (in breakpad) is a compilation unit, creating the
function for the CU allows `ResolveSymbolContext` to resolve
`eSymbolContextFunction`.
Differential Revision: https://reviews.llvm.org/D113163
The Swift stdlib uses absolute symbols in the dylib to communicate
feature flags to the process. LLDB's expression evaluator needs to be
able to find them. This wires up absolute symbols so they show up in
the symtab lookup command, which is also all that's needed for them to
be visible to the expression evaluator JIT.
rdar://85093828
Differential Revision: https://reviews.llvm.org/D113445
LLDB build were failing due to following two test failures:
lldb-shell :: ObjectFile/ELF/basic-info.yaml
lldb-shell :: SymbolFile/DWARF/x86/debug-types-address-ranges.s
There were caused by commit 6506907a0a
Front-load the first_valid_code_address check, so that we avoid creating
the function object (instead of simply refusing to use it in queries).
Differential Revision: https://reviews.llvm.org/D112310
Based on post-commit review discussion on
2bd8493847 with Richard Smith.
Other uses of forcing HasEmptyPlaceHolder to false seem OK to me -
they're all around pointer/reference types where the pointer/reference
token will appear at the rightmost side of the left side of the type
name, so they make nested types (eg: the "int" in "int *") behave as
though there is a non-empty placeholder (because the "*" is essentially
the placeholder as far as the "int" is concerned).
This was originally committed in 277623f4d5
Reverted in f9ad1d1c77 due to breakages
outside of clang - lldb seems to have some strange/strong dependence on
"char [N]" versus "char[N]" when printing strings (not due to that name
appearing in DWARF, but probably due to using clang to stringify type
names) that'll need to be addressed, plus a few other odds and ends in
other subprojects (clang-tools-extra, compiler-rt, etc).
This patch fixes a problem introduced by clang change
https://reviews.llvm.org/D95617 and described by
https://bugs.llvm.org/show_bug.cgi?id=50076#c6, where inlined functions
omit unused parameters both in the stack trace and in `frame var`
command. With this patch, the parameters are listed correctly in the
stack trace and in `frame var` command.
Specifically, we parse formal parameters from the abstract version of
inlined functions and use those formal parameters if they are missing
from the concrete version.
Differential Revision: https://reviews.llvm.org/D110571
specifically, ignore addresses that point before the first code section.
This resurrects D87172 with several notable changes:
- it fixes a bug where the early exits in InitializeObject left
m_first_code_address "initialized" to LLDB_INVALID_ADDRESS (0xfff..f),
which caused _everything_ to be ignored.
- it extends the line table fix to function parsing as well, where it
replaces a similar check which was checking the executable permissions
of the section. This was insufficient because some
position-independent elf executables can have an executable segment
mapped at file address zero. (What makes this fix different is that it
checks for the executable-ness of the sections contained within that
segment, and those will not be at address zero.)
- It uses a different test case, with an elf file with near-zero
addresses, and checks for both line table and function parsing.
Differential Revision: https://reviews.llvm.org/D112058