ValueObject is part of lldbCore for historical reasons, but conceptually
it deserves to be its own library. This does introduce a (link-time) circular
dependency between lldbCore and lldbValueObject, which is unfortunate
but probably unavoidable because so many things in LLDB rely on
ValueObject. We already have cycles and these libraries are never built
as dylibs so while this doesn't improve the situation, it also doesn't
make things worse.
The header includes were updated with the following command:
```
find . -type f -exec sed -i.bak "s%include \"lldb/Core/ValueObject%include \"lldb/ValueObject/ValueObject%" '{}' \;
```
LLVM now triggers an assertion when the format string and arguments
don't match. Fix a variety of incorrect format strings I discovered when
enabling logging with a debug build.
As specified in the docs,
1) raw_string_ostream is always unbuffered and
2) the underlying buffer may be used directly
( 65b13610a5 for further reference )
* Don't call raw_string_ostream::flush(), which is essentially a no-op.
* Avoid unneeded calls to raw_string_ostream::str(), to avoid excess
indirection.
This patch removes all of the Set.* methods from Status.
This cleanup is part of a series of patches that make it harder use the
anti-pattern of keeping a long-lives Status object around and updating
it while dropping any errors it contains on the floor.
This patch is largely NFC, the more interesting next steps this enables
is to:
1. remove Status.Clear()
2. assert that Status::operator=() never overwrites an error
3. remove Status::operator=()
Note that step (2) will bring 90% of the benefits for users, and step
(3) will dramatically clean up the error handling code in various
places. In the end my goal is to convert all APIs that are of the form
` ResultTy DoFoo(Status& error)
`
to
` llvm::Expected<ResultTy> DoFoo()
`
How to read this patch?
The interesting changes are in Status.h and Status.cpp, all other
changes are mostly
` perl -pi -e 's/\.SetErrorString/ = Status::FromErrorString/g' $(git
grep -l SetErrorString lldb/source)
`
plus the occasional manual cleanup.
With this commit, we also hide the implementation details of
`std::invoke`. To do so, the `LibCXXFrameRecognizer` got a couple more
regular expressions.
The regular expression passed into `AddRecognizer` became problematic,
as it was evaluated on the demangled name. Those names also included
result types for C++ symbols. For `std::__invoke` the return type is a
huge `decltype(...)`, making the regular expresison really hard to
write.
Instead, I added support to `AddRecognizer` for matching on the
demangled names without result type and argument types.
By hiding the implementation details of `invoke`, also the back traces
for `std::function` become even nicer, because `std::function` is using
`__invoke` internally.
Co-authored-by: Adrian Prantl <aprantl@apple.com>
This patch changes the return type of `GetMetadata` from a
`ClangASTMetadata*` to a `std::optional<ClangASTMetadata>`. Except for
one call-site (`SetDeclIsForcefullyCompleted`), we never actually make
use of the mutability of the returned metadata. And we never make use of
the pointer-identity. By passing `ClangASTMetadata` by-value (the type
is fairly small, size of 2 64-bit pointers) we'll avoid some questions
surrounding the lifetimes/ownership/mutability of this metadata.
For consistency, we also change the parameter to `SetMetadata` from
`ClangASTMetadata&` to `ClangASTMetadata` (which is an NFC since we copy
the data anyway).
This came up during some changes we plan to make where we [create
redeclaration chains for decls in the LLDB
AST](https://github.com/llvm/llvm-project/pull/95100). We want to avoid
having to dig out the canonical decl of the declaration chain for
retrieving/setting the metadata. It should just be copied across all
decls in the chain. This is easier to guarantee when everything is done
by-value.
Make LanguageRuntime::GetTypeBitSize return an optional. This should be
NFC, though the ObjCLanguageRuntime implementation is (possibly) more
defensive against returning 0.
I'm not sure if it's possible for both `m_ivar.size` and `m_ivar.offset`
to be zero. Previously, we'd return 0 and cache it, only to discard it
the next time when finding it in the cache, and recomputing it again.
The new code will avoid putting it in the cache in the first place.
AppleObjCTypeEncodingParser::BuildObjCObjectPointerType currently
contains an lldbassert to detect situations where we have a forward
declaration without a definition. According to the accompanying comment,
its purpose is to catch "weird cases" during test suite runs.
However, because this is an lldbassert, we show a scary message to our
users who think this is a problem and report the issue to us.
Unfortunately those reports aren't very actionable without a way to know
the name of the type.
This patch changes the lldbassert to a regular assert and emits a log
message to the types log when this happens.
rdar://127439898
This is fixing a report from ubsan which I don't think is super high
value, but our testsuite hits it on
TestDataFormatterObjCNSContainer.py so I'd like to work around it. We
are getting
```
runtime error: left shift of negative value -8827055269646171913
3159 int64_t data_payload_signed =
3160 ((int64_t)((int64_t)unobfuscated
-> 3161 << m_objc_debug_taggedpointer_ext_payload_lshift) >>
3162 m_objc_debug_taggedpointer_ext_payload_rshift);
```
At this point `unobfuscated` is 0x85800000000000f7 and
`m_objc_debug_taggedpointer_ext_payload_lshift` is 9, so
`(int64_t)0x85800000000000f7<<9` shifts off the "sign" bit and then some
zeroes etc, and that's how we get this error.
We're only trying to extract some bits in the middle of the doubleword,
so the fact that we're "losing" the sign is not a bug. Change the inner
cast to (uint64_t).
Change GetNumChildren()/CalculateNumChildren() methods return
llvm::Expected
This is an NFC change that does not yet add any error handling or change
any code to return any errors.
This is the second big change in the patch series started with
https://github.com/llvm/llvm-project/pull/83501
A follow-up PR will wire up error handling.
Change GetNumChildren()/CalculateNumChildren() methods return
llvm::Expected
This is an NFC change that does not yet add any error handling or change
any code to return any errors.
This is the second big change in the patch series started with
https://github.com/llvm/llvm-project/pull/83501
A follow-up PR will wire up error handling.
Partly, there's just a lot of unnecessary boiler plate. It's also
possible to define combinations of arguments that make no sense (e.g.
eArgRepeatPlus followed by eArgRepeatPlain...) but these are never
checked since we just push_back directly into the argument definitions.
This commit is step 1 of this cleanup - do the obvious stuff. In it, all
the simple homogenous argument lists and the breakpoint/watchpoint
ID/Range types, are set with common functions. This is an NFC change, it
just centralizes boiler plate. There's no checking yet because you can't
get a single argument wrong.
The end goal is that all argument definition goes through functions and
m_arguments is hidden so that you can't define inconsistent argument
sets.
This patch replaces uses of StringRef::{starts,ends}with with
StringRef::{starts,ends}_with for consistency with
std::{string,string_view}::{starts,ends}_with in C++20.
I'm planning to deprecate and eventually remove
StringRef::{starts,ends}with.
This patch revives the effort to get this Phabricator patch into
upstream:
https://reviews.llvm.org/D137900
This patch was accepted before in Phabricator but I found some
-gsimple-template-names issues that are fixed in this patch.
A fixed up version of the description from the original patch starts
now.
This patch started off trying to fix Module::FindFirstType() as it
sometimes didn't work. The issue was the SymbolFile plug-ins didn't do
any filtering of the matching types they produced, and they only looked
up types using the type basename. This means if you have two types with
the same basename, your type lookup can fail when only looking up a
single type. We would ask the Module::FindFirstType to lookup "Foo::Bar"
and it would ask the symbol file to find only 1 type matching the
basename "Bar", and then we would filter out any matches that didn't
match "Foo::Bar". So if the SymbolFile found "Foo::Bar" first, then it
would work, but if it found "Baz::Bar" first, it would return only that
type and it would be filtered out.
Discovering this issue lead me to think of the patch Alex Langford did a
few months ago that was done for finding functions, where he allowed
SymbolFile objects to make sure something fully matched before parsing
the debug information into an AST type and other LLDB types. So this
patch aimed to allow type lookups to also be much more efficient.
As LLDB has been developed over the years, we added more ways to to type
lookups. These functions have lots of arguments. This patch aims to make
one API that needs to be implemented that serves all previous lookups:
- Find a single type
- Find all types
- Find types in a namespace
This patch introduces a `TypeQuery` class that contains all of the state
needed to perform the lookup which is powerful enough to perform all of
the type searches that used to be in our API. It contain a vector of
CompilerContext objects that can fully or partially specify the lookup
that needs to take place.
If you just want to lookup all types with a matching basename,
regardless of the containing context, you can specify just a single
CompilerContext entry that has a name and a CompilerContextKind mask of
CompilerContextKind::AnyType.
Or you can fully specify the exact context to use when doing lookups
like: CompilerContextKind::Namespace "std"
CompilerContextKind::Class "foo"
CompilerContextKind::Typedef "size_type"
This change expands on the clang modules code that already used a
vector<CompilerContext> items, but it modifies it to work with
expression type lookups which have contexts, or user lookups where users
query for types. The clang modules type lookup is still an option that
can be enabled on the `TypeQuery` objects.
This mirrors the most recent addition of type lookups that took a
vector<CompilerContext> that allowed lookups to happen for the
expression parser in certain places.
Prior to this we had the following APIs in Module:
```
void
Module::FindTypes(ConstString type_name, bool exact_match, size_t max_matches,
llvm::DenseSet<lldb_private::SymbolFile *> &searched_symbol_files,
TypeList &types);
void
Module::FindTypes(llvm::ArrayRef<CompilerContext> pattern, LanguageSet languages,
llvm::DenseSet<lldb_private::SymbolFile *> &searched_symbol_files,
TypeMap &types);
void Module::FindTypesInNamespace(ConstString type_name,
const CompilerDeclContext &parent_decl_ctx,
size_t max_matches, TypeList &type_list);
```
The new Module API is much simpler. It gets rid of all three above
functions and replaces them with:
```
void FindTypes(const TypeQuery &query, TypeResults &results);
```
The `TypeQuery` class contains all of the needed settings:
- The vector<CompilerContext> that allow efficient lookups in the symbol
file classes since they can look at basename matches only realize fully
matching types. Before this any basename that matched was fully realized
only to be removed later by code outside of the SymbolFile layer which
could cause many types to be realized when they didn't need to.
- If the lookup is exact or not. If not exact, then the compiler context
must match the bottom most items that match the compiler context,
otherwise it must match exactly
- If the compiler context match is for clang modules or not. Clang
modules matches include a Module compiler context kind that allows types
to be matched only from certain modules and these matches are not needed
when d oing user type lookups.
- An optional list of languages to use to limit the search to only
certain languages
The `TypeResults` object contains all state required to do the lookup
and store the results:
- The max number of matches
- The set of SymbolFile objects that have already been searched
- The matching type list for any matches that are found
The benefits of this approach are:
- Simpler API, and only one API to implement in SymbolFile classes
- Replaces the FindTypesInNamespace that used a CompilerDeclContext as a
way to limit the search, but this only worked if the TypeSystem matched
the current symbol file's type system, so you couldn't use it to lookup
a type in another module
- Fixes a serious bug in our FindFirstType functions where if we were
searching for "foo::bar", and we found a "baz::bar" first, the basename
would match and we would only fetch 1 type using the basename, only to
drop it from the matching list and returning no results
This patch is rearranging code a bit to add WatchpointResources to
Process. A WatchpointResource is meant to represent a hardware
watchpoint register in the inferior process. It has an address, a size,
a type, and a list of Watchpoints that are using this
WatchpointResource.
This current patch doesn't add any of the features of
WatchpointResources that make them interesting -- a user asking to watch
a 24 byte object could watch this with three 8 byte WatchpointResources.
Or a Watchpoint on 1 byte at 0x1002 and a second watchpoint on 1 byte at
0x1003, these must both be served by a single WatchpointResource on that
doubleword at 0x1000 on a 64-bit target, if two hardware watchpoint
registers were used to track these separately, one of them may not be
hit. Or if you have one Watchpoint on a variable with a condition set,
and another Watchpoint on that same variable with a command defined or
different condition, or ignorecount, both of those Watchpoints need to
evaluate their criteria/commands when their WatchpointResource has been
hit.
There's a bit of code movement to rearrange things in the direction I'll
need for implementing this feature, so I want to start with reviewing &
landing this mostly NFC patch and we can focus on the algorithmic
choices about how WatchpointResources are shared and handled as they're
triggeed, separately.
This patch also stops printing "Watchpoint <n> hit: old value: <x>, new
vlaue: <y>" for Read watchpoints. I could make an argument for print
"Watchpoint <n> hit: current value <x>" but the current output doesn't
make any sense, and the user can print the value if they are
particularly interested. Read watchpoints are used primarily to
understand what code is reading a variable.
This patch adds more fallbacks for how to print the objects being
watched if we have types, instead of assuming they are all integral
values, so a struct will print its elements. As large watchpoints are
added, we'll be doing a lot more of those.
To track the WatchpointSP in the WatchpointResources, I changed the
internal API which took a WatchpointSP and devolved it to a Watchpoint*,
which meant touching several different Process files. I removed the
watchpoint code in ProcessKDP which only reported that watchpoints
aren't supported, the base class does that already.
I haven't yet changed how we receive a watchpoint to identify the
WatchpointResource responsible for the trigger, and identify all
Watchpoints that are using this Resource to evaluate their conditions
etc. This is the same work that a BreakpointSite needs to do when it has
been tiggered, where multiple Breakpoints may be at the same address.
There is not yet any printing of the Resources that a Watchpoint is
implemented in terms of ("watchpoint list", or
SBWatchpoint::GetDescription).
"watchpoint set var" and "watchpoint set expression" take a size
argument which was previously 1, 2, 4, or 8 (an enum). I've changed this
to an unsigned int. Most hardware implementations can only watch 1, 2,
4, 8 byte ranges, but with Resources we'll allow a user to ask for
different sized watchpoints and set them in hardware-expressble terms
soon.
I've annotated areas where I know there is work still needed with
LWP_TODO that I'll be working on once this is landed.
I've tested this on aarch64 macOS, aarch64 Linux, and Intel macOS.
https://discourse.llvm.org/t/rfc-large-watchpoint-support-in-lldb/72116
(cherry picked from commit fc6b72523f)
This patch is rearranging code a bit to add WatchpointResources to
Process. A WatchpointResource is meant to represent a hardware
watchpoint register in the inferior process. It has an address, a size,
a type, and a list of Watchpoints that are using this
WatchpointResource.
This current patch doesn't add any of the features of
WatchpointResources that make them interesting -- a user asking to watch
a 24 byte object could watch this with three 8 byte WatchpointResources.
Or a Watchpoint on 1 byte at 0x1002 and a second watchpoint on 1 byte at
0x1003, these must both be served by a single WatchpointResource on that
doubleword at 0x1000 on a 64-bit target, if two hardware watchpoint
registers were used to track these separately, one of them may not be
hit. Or if you have one Watchpoint on a variable with a condition set,
and another Watchpoint on that same variable with a command defined or
different condition, or ignorecount, both of those Watchpoints need to
evaluate their criteria/commands when their WatchpointResource has been
hit.
There's a bit of code movement to rearrange things in the direction I'll
need for implementing this feature, so I want to start with reviewing &
landing this mostly NFC patch and we can focus on the algorithmic
choices about how WatchpointResources are shared and handled as they're
triggeed, separately.
This patch also stops printing "Watchpoint <n> hit: old value: <x>, new
vlaue: <y>" for Read watchpoints. I could make an argument for print
"Watchpoint <n> hit: current value <x>" but the current output doesn't
make any sense, and the user can print the value if they are
particularly interested. Read watchpoints are used primarily to
understand what code is reading a variable.
This patch adds more fallbacks for how to print the objects being
watched if we have types, instead of assuming they are all integral
values, so a struct will print its elements. As large watchpoints are
added, we'll be doing a lot more of those.
To track the WatchpointSP in the WatchpointResources, I changed the
internal API which took a WatchpointSP and devolved it to a Watchpoint*,
which meant touching several different Process files. I removed the
watchpoint code in ProcessKDP which only reported that watchpoints
aren't supported, the base class does that already.
I haven't yet changed how we receive a watchpoint to identify the
WatchpointResource responsible for the trigger, and identify all
Watchpoints that are using this Resource to evaluate their conditions
etc. This is the same work that a BreakpointSite needs to do when it has
been tiggered, where multiple Breakpoints may be at the same address.
There is not yet any printing of the Resources that a Watchpoint is
implemented in terms of ("watchpoint list", or
SBWatchpoint::GetDescription).
"watchpoint set var" and "watchpoint set expression" take a size
argument which was previously 1, 2, 4, or 8 (an enum). I've changed this
to an unsigned int. Most hardware implementations can only watch 1, 2,
4, 8 byte ranges, but with Resources we'll allow a user to ask for
different sized watchpoints and set them in hardware-expressble terms
soon.
I've annotated areas where I know there is work still needed with
LWP_TODO that I'll be working on once this is landed.
I've tested this on aarch64 macOS, aarch64 Linux, and Intel macOS.
https://discourse.llvm.org/t/rfc-large-watchpoint-support-in-lldb/72116
This patch moves `ObjCMethodDecl::ImplementationControl` to a DeclBase.h so that it's complete at the point where corresponsing bit-field is declared. This patch also converts it to a scoped enum `clang::ObjCImplementationControl`.
[lldb] Part 2 of 2 - Refactor `CommandObject::DoExecute(...)` to return
`void` instead of ~~`bool`~~
Justifications:
- The code doesn't ultimately apply the `true`/`false` return values.
- The methods already pass around a `CommandReturnObject`, typically
with a `result` parameter.
- Each command return object already contains:
- A more precise status
- The error code(s) that apply to that status
Part 1 refactors the `CommandObject::Execute(...)` method.
- See
[https://github.com/llvm/llvm-project/pull/69989](https://github.com/llvm/llvm-project/pull/69989)
rdar://117378957
We added support for the GNUstep ObjC runtime in 0b6264738f. In order to check if the target process uses
GNUstep we run an expensive symbol lookup in `CreateInstance()`. This turned out to cause a heavy performance
regression for non-GNUstep inferiors.
This patch puts a cheaper check in front, so that the vast majority of requests should return early. This
should fix the symptom for the moment. The conceptual question remains: Why does `LanguageRuntime::FindPlugin`
invoke `create_callback` for each available runtime unconditionally in every `Process::ModulesDidLoad`?
Reviewed By: jasonmolenda, jingham, bulbazord
Differential Revision: https://reviews.llvm.org/D158205
StreamFile subclasses Stream (from lldbUtility) and is backed by a File
(from lldbHost). It does not depend on anything from lldbCore or any of its
sibling libraries, so I think it makes sense for this to live in
lldbHost instead.
Differential Revision: https://reviews.llvm.org/D157460
Classes implemented in Swift can be exposed to ObjC. For those classes, the ObjC
metadata is incomplete. Specifically, the encoded types of the ivars are incomplete. As
one might expect, the Swift metadata _is_ complete. In such cases, the Swift runtime
should be consulted when determining the dynamic type of a value.
Differential Revision: https://reviews.llvm.org/D152837
Fix incorrect uses of LLDB_LOG_ERROR. The macro doesn't automatically
inject the error in the log message: it merely passes the error as the
first argument to formatv and therefore must be referenced with {0}.
Thanks to Nicholas Allegra for collecting a list of places where the
macro was misused.
rdar://111581655
Differential revision: https://reviews.llvm.org/D154530
The shared cache has grown past the previously hardcoded limit. As a
temporary measure, I am increasing the hardcoded number of classes we
can expect to read from the shared cache. This is not a good long-term
solution.
Differential Revision: https://reviews.llvm.org/D153817
The Objective-C runtime and the shared cache has changed slightly.
Given a class_ro_t, the baseMethods ivar is now a pointer union and may
either be a method_list_t pointer or a pointer to a relative list of
lists. The entries of this relative list of lists are indexes that refer
to a specific image in the shared cache in addition to a pointer offset
to find the accompanying method_list_t. We have to go over each of these
entries, parse it, and then if the relevant image is loaded in the
process, we add those methods to the relevant clang Decl.
In order to determine if an image is loaded, the Objective-C runtime
exposes a symbol that lets us determine if a particular image is loaded.
We maintain a data structure SharedCacheImageHeaders to keep track of
that information.
There is a known issue where if an image is loaded after we create a
Decl for a class, the Decl will not have the relevant methods from that
image (i.e. for Categories).
rdar://107957209
Differential Revision: https://reviews.llvm.org/D153597
Existing callers of `GetChildAtIndex` pass true for can_create. This change
makes true the default value, callers don't have to pass an opaque true.
See also D151966 for the same change to `GetChildMemberWithName`.
Differential Revision: https://reviews.llvm.org/D152031
It turns out all existing callers of `GetChildMemberWithName` pass true for `can_create`.
This change makes `true` the default value, callers don't have to pass an opaque true.
Differential Revision: https://reviews.llvm.org/D151966
`GetChildMemberWithName` does not need a `ConstString`. This change makes the function
take a `StringRef` instead, which alleviates the need for callers to construct a
`ConstString`. I don't expect this change to improve performance, only ergonomics.
This is in support of Alex's effort to replace `ConstString` where appropriate.
There are related `ValueObject` functions that can also be changed, if this is accepted.
Differential Revision: https://reviews.llvm.org/D151615
This patch refactors the `StructuredData::Integer` class to make it
templated, makes it private and adds 2 public specialization for both
`int64_t` & `uint64_t` with a public type aliases, respectively
`SignedInteger` & `UnsignedInteger`.
It adds new getter for signed and unsigned interger values to the
`StructuredData::Object` base class and changes the implementation of
`StructuredData::Array::GetItemAtIndexAsInteger` and
`StructuredData::Dictionary::GetValueForKeyAsInteger` to support signed
and unsigned integers.
This patch also adds 2 new `Get{Signed,Unsigned}IntegerValue` to the
`SBStructuredData` class and marks `GetIntegerValue` as deprecated.
Finally, this patch audits all the caller of `StructuredData::Integer`
or `StructuredData::GetIntegerValue` to use the proper type as well the
various tests that uses `SBStructuredData.GetIntegerValue`.
rdar://105575764
Differential Revision: https://reviews.llvm.org/D150485
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
This is the next patch after D146058. We can now parse expressions to print instance variables from ObjC classes. Until now the expression parser would bail out with an error like this:
```
error: expression failed to parse:
error: Error [IRForTarget]: Couldn't find Objective-C indirect ivar symbol OBJC_IVAR_$_TestObj._int
```
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D146154
This is a user facing action, it is meant to focus the user's attention on
something other than the 0th frame when you stop somewhere where that's
helpful. For instance, stopping in pthread_kill after an assert will select
the assert frame.
This is not something you want to have happen internally in lldb, both
because internally you really don't want the selected frame changing out
from under you, and because the recognizers can do arbitrary work, and that
can cause deadlocks or other unexpected behavior.
However, it's not something that the current code does
explicitly after a stop has been delivered, it's expected to happen implicitly
as part of stopping. I changing this to call SMRF explicitly after a user
stop, but that got pretty ugly quickly.
So I added a bool to control whether to run this and audited all the current
uses to determine whether we're returning to the user or not.
Differential Revision: https://reviews.llvm.org/D148863
The high level goal of this change is to remove lldbTarget's dependency
on lldbPluginProcessUtility. The reason for this existing dependency is
so that we can create the appropriate UnixSignals object based on an
ArchSpec. Instead of using the ArchSpec, we can instead take advantage
of the Platform associated with the current Target.
This is accomplished by adding a new method to Platform,
CreateUnixSignals, which will create the correct UnixSignals object for
us. We then can use `Platform::GetUnixSignals` and rely on that to give
us the correct signals as needed.
Differential Revision: https://reviews.llvm.org/D146263
This assert is only checked in Debug builds but ignored in all other
builds. This replaces this code with lldbassert which should print a
warning to the user in release builds and actually asserts in debug
builds.
Differential revision: https://reviews.llvm.org/D76697
The current interface theoretically could lead to a use-after-free
when a client holds on to the returned pointer. Fix this by returning
a shared_ptr to the scratch typesystem.
rdar://103619233
Differential Revision: https://reviews.llvm.org/D141100