In [D148380](https://reviews.llvm.org/D148380), Alex added locking to
PathMappingLists. The current implementation runs the callback under the
lock, which I don't believe is necessary. As far as I can tell, no users
of the callback are relying on the list not having been modified until
the callback is handled.
This patch implements my suggestion to unlock the mutex before the
callback. I also switched to a non-recursive mutex as I don't believe
the recursive property is needed. To make the class fully thread safe, I
did have to introduce another mutex to protect the callback members.
The motivation for this change is #114507. Specifically,
Target::SetExecutableModule calls Target::GetOrCreateModule, which
potentially performs path remapping, which in turns has a callback to
Target::SetExecutableModule.
The computation of 'Thread::IsVirtualStep" was wrong - it called being
at the bottom of a virtual call stack a "virtual step" but that is
actually when you've gotten to concrete code and need to step for real.
I also added a test for this.
This fixes the two test suite failures that I missed in the PR:
https://github.com/llvm/llvm-project/pull/112939
One was a poorly written test case - it assumed that on connect to a
gdb-remote with a running process, lldb MUST have fetched all the frame
0 registers. In fact, there's no need for it to do so (as the CallSite
patch showed...) and if we don't need to we shouldn't. So I fixed the
test to only expect a `g` packet AFTER calling read_registers.
The other was a place where some code had used 0 when it meant
LLDB_INVALID_LINE_NUMBER, which I had fixed but missed one place where
it was still compared to 0.
…ne stepping (#112939)"
This was breaking some gdb-remote packet counting tests on the bots. I
can't see how this patch could cause that breakage, but I'm reverting to
figure that out.
This reverts commit f147437945.
Previously lldb didn't support setting breakpoints on call site
locations. This patch adds that ability.
It would be very slow if we did this by searching all the debug
information for every inlined subroutine record looking for a call-site
match, so I added one restriction to the call-site support. This change
will find all call sites for functions that also supply at least one
line to the regular line table. That way we can use the fact that the
line table search will move the location to that subsequent line (but
only within the same function). When we find an actually moved source
line match, we can search in the function that contained that line table
entry for the call-site, and set the breakpoint location back to that.
When I started writing tests for this new ability, it quickly became
obvious that our support for virtual inline stepping was pretty buggy.
We didn't print the right file & line number for the breakpoint, and we
didn't set the position in the "virtual inlined stack" correctly when we
hit the breakpoint. We also didn't step through the inlined frames
correctly. There was code to try to detect the right inlined stack
position, but it had been refactored a while back with the comment that
it was super confusing and the refactor was supposed to make it clearer,
but the refactor didn't work either.
That code was made much clearer by abstracting the job of "handling the
stack readjustment" to the various StopInfo's. Previously, there was a
big (and buggy) switch over stop info's. Moving the responsibility to
the stop info made this code much easier to reason about.
We also had no tests for virtual inlined stepping (our inlined stepping
test was actually written specifically to avoid the formation of a
virtual inlined stack... So I also added tests for that along with the
tests for setting the call-site breakpoints.
ValueObject is part of lldbCore for historical reasons, but conceptually
it deserves to be its own library. This does introduce a (link-time) circular
dependency between lldbCore and lldbValueObject, which is unfortunate
but probably unavoidable because so many things in LLDB rely on
ValueObject. We already have cycles and these libraries are never built
as dylibs so while this doesn't improve the situation, it also doesn't
make things worse.
The header includes were updated with the following command:
```
find . -type f -exec sed -i.bak "s%include \"lldb/Core/ValueObject%include \"lldb/ValueObject/ValueObject%" '{}' \;
```
This allows languages to provide an opinion on whether two symbol
contexts are equivalent (i.e. belong to the same function).
It is useful to drive the comparisons done by stepping plans that need
to ensure symbol contexts obtained from different points in time are
actually the same.
Reverting this again; I added a commit which added @skipIfDarwin
markers to the TestReverseContinueBreakpoints.py and
TestReverseContinueNotSupported.py API tests, which use lldb-server
in gdbserver mode which does not work on Darwin. But the aarch64 ubuntu
bot reported a failure on TestReverseContinueBreakpoints.py,
https://lab.llvm.org/buildbot/#/builders/59/builds/6397
File "/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/llvm-project/lldb/test/API/functionalities/reverse-execution/TestReverseContinueBreakpoints.py", line 63, in test_reverse_continue_skip_breakpoint
self.reverse_continue_skip_breakpoint_internal(async_mode=False)
File "/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/llvm-project/lldb/test/API/functionalities/reverse-execution/TestReverseContinueBreakpoints.py", line 81, in reverse_continue_skip_breakpoint_internal
self.expect(
File "/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/llvm-project/lldb/packages/Python/lldbsuite/test/lldbtest.py", line 2372, in expect
self.runCmd(
File "/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/llvm-project/lldb/packages/Python/lldbsuite/test/lldbtest.py", line 1002, in runCmd
self.assertTrue(self.res.Succeeded(), msg + output)
AssertionError: False is not true : Process should be stopped due to history boundary
Error output:
error: Process must be launched.
This reverts commit 4f297566b3.
This commit only adds support for the
`SBProcess::ReverseContinue()` API. A user-accessible command for this
will follow in a later commit.
This feature depends on a gdbserver implementation (e.g. `rr`) providing
support for the `bc` and `bs` packets. `lldb-server` does not support
those packets, and there is no plan to change that. So, for testing
purposes, `lldbreverse.py` wraps `lldb-server` with a Python
implementation of *very limited* record-and-replay functionality for use
by *tests only*.
The majority of this PR is test infrastructure (about 700 of the 950
lines added).
This patch adds the support to `Process.cpp` to automatically save off
TLS sections, either via loading the memory region for the module, or
via reading `fs_base` via generic register. Then when Minidumps are
loaded, we now specify we want the dynamic loader to be the `POSIXDYLD`
so we can leverage the same TLS accessor code as `ProcessELFCore`. Being
able to access TLS Data is an important step for LLDB generated
minidumps to have feature parity with ELF Core dumps.
This fixes the following assertion: "Cannot create Expected<T> from
Error success value." The problem was that GetFrameBaseValue return
false without updating the Status argument. This patch eliminates the
opportunity for mistakes by returning an llvm:Error.
This commit only adds support for the
`SBProcess::ReverseContinue()` API. A user-accessible command for this
will follow in a later commit.
This feature depends on a gdbserver implementation (e.g. `rr`) providing
support for the `bc` and `bs` packets. `lldb-server` does not support
those packets, and there is no plan to change that. So, for testing
purposes, `lldbreverse.py` wraps `lldb-server` with a Python
implementation of *very limited* record-and-replay functionality for use
by *tests only*.
The majority of this PR is test infrastructure (about 700 of the 950
lines added).
LLVM now triggers an assertion when the format string and arguments
don't match. Fix a variety of incorrect format strings I discovered when
enabling logging with a debug build.
This is similar to 9fe455fd0c, but for FA locations instead of
register locations.
This is useful for unwind plans that cannot create abstract unwind
rules, but instead must inspect the state of the program to determine
the current CFA.
…NFC]
This patch is the first patch in a series reworking of Pete Lawrence's
(@PortalPete) amazing proposal for better expression evaluator error
messages (https://github.com/llvm/llvm-project/pull/80938)
This patch is preparatory patch for improving the rendering of
expression evaluator diagnostics. Currently diagnostics are rendered
into a string and the command interpreter layer then textually parses
words like "error:" to (sometimes) color the output accordingly. In
order to enable user interfaces to do better with diagnostics, we need
to store them in a machine-readable fromat. This patch does this by
adding a new llvm::Error kind wrapping a DiagnosticDetail struct that
is used when the error type is eErrorTypeExpression. Multiple
diagnostics are modeled using llvm::ErrorList.
Right now the extra information is not used by the CommandInterpreter,
this will be added in a follow-up patch!
lldb has two RegisterLocation classes that do slightly different things.
UnwindPlan::Row::RegisterLocation (new: AbstractRegisterLocation) has a
description of how to find a register's value or location, not specific
to a particular stopping point. It may say that at a given offset into a
function, the caller's register has been spilled to stack memory at CFA
minus an offset. Or it may say that the caller's register is at a DWARF
exprssion.
UnwindLLDB::RegisterLocation (new: ConcreteRegisterLocation) is a
specific address where the register is currently stored, or the register
it has been copied into, or its value at this point in the current
function execution.
When lldb stops in a function, it interprets the
AbstractRegisterLocation's instructions using the register context and
stack memory, to create the ConcreteRegisterLocation at this point in
time for this stack frame.
I'm not thrilled with AbstractRegisterLocation and
ConcreteRegisterLocation, but it's better than the same name and it will
be easier to update them if someone suggests a better pair.
Sometimes you only want to temporarily disable a frame recognizer
instead of deleting it. In particular, when dealing with one of the
builtin frame recognizers, which cannot be restored after deletion.
To be able to write test cases for this functionality, I also changed
`lldb/test/API/commands/frame/recognizer` to use normal C instead of
Objective-C
...and "[lldb/Interpreter] Introduce `ScriptedStopHook{,Python}Interface` & make use of it (#105449)"
This reverts commit 76b827bb4d, and commit 1e131ddfa8
because the first commit caused the test command-stop-hook-output.test to fail.
This patch introduces new `ScriptedStopHook{,Python}Interface` classes
that make use of the Scripted Interface infrastructure and makes use of
it in `StopHookScripted`.
It also relax the requirement on the number of argument for initializing
scripting extension if the size of the interface parameter pack contains
1 less element than the extension maximum number of positional arguments
for this initializer.
This addresses the cases where the embedded interpreter session
dictionary is passed to the extension initializer which is not used most
of the time.
---------
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
This attempts to improve user-experience when LLDB stops on a
verbose_trap. Currently if a `__builtin_verbose_trap` triggers, we
display the first frame above the call to the verbose_trap. So in the
newly added test case, we would've previously stopped here:
```
(lldb) run
Process 28095 launched: '/Users/michaelbuch/a.out' (arm64)
Process 28095 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = Bounds error: out-of-bounds access
frame #1: 0x0000000100003f5c a.out`std::__1::vector<int>::operator[](this=0x000000016fdfebef size=0, (null)=10) at verbose_trap.cpp:6:9
3 template <typename T>
4 struct vector {
5 void operator[](unsigned) {
-> 6 __builtin_verbose_trap("Bounds error", "out-of-bounds access");
7 }
8 };
```
After this patch, we would stop in the first non-`std` frame:
```
(lldb) run
Process 27843 launched: '/Users/michaelbuch/a.out' (arm64)
Process 27843 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = Bounds error: out-of-bounds access
frame #2: 0x0000000100003f44 a.out`g() at verbose_trap.cpp:14:5
11
12 void g() {
13 std::vector<int> v;
-> 14 v[10];
15 }
16
```
rdar://134490328
As specified in the docs,
1) raw_string_ostream is always unbuffered and
2) the underlying buffer may be used directly
( 65b13610a5 for further reference )
* Don't call raw_string_ostream::flush(), which is essentially a no-op.
* Avoid unneeded calls to raw_string_ostream::str(), to avoid excess
indirection.
Recently in #107731 this change was revereted due to excess memory size
in `TestSkinnyCore`. This was due to a bug where a range's end was being
passed as size. Creating massive memory ranges.
Additionally, and requiring additional review, I added more unit tests
and more verbose logic to the merging of save core memory regions.
@jasonmolenda as an FYI.
This PR adds a statistics provider cache, which allows an individual
target to keep a rolling tally of it's total time and number of
invocations for a given summary provider. This information is then
available in statistics dump to help slow summary providers, and gleam
more into insight into LLDB's time use.
Reapplies #106293, testing identified issue in the merging code. I used
this opportunity to strip CoreFileMemoryRanges to it's own file and then
add unit tests on it's behavior.
This patch fixes an issue where the `memory find` command would
effectively stop searching after encountering a memory read error (which
could happen due to unreadable memory), without giving any indication
that it has done so (it would just print it could not find the pattern).
To make matters worse, it would not terminate after encountering this
error, but rather proceed to slowly increment the address pointer, which
meant that searching a large region could take a very long time (and
give the appearance that lldb is actually searching for the thing).
The patch fixes this first problem by detecting read errors and
skipping over (using GetMemoryRegionInfo) the unreadable parts of memory
and resuming the search after them. It also reads the memory in bulk
(`max(sizeof(pattern))`), which speeds up the search significantly (up
to 6x for live processes, 18x for core files).
`memory read` will return an error if you try to read more than 1k bytes
in a single command, instructing you to set
`target.max-memory-read-size` or use `--force` if you intended to read
more than that. This is a safeguard for a command where people are being
explicit about how much memory they would like lldb to read (either to
display, or save to a file) and is an annoyance every time you need to
read more than a small amount. If someone confuses the --count argument
with the start address, lldb may begin dumping gigabytes of data but I'd
rather that behavior than requiring everyone to special-case their way
around a common use case.
I don't want to remove the setting because many people have added (much
larger) default max read sizes to their ~/.lldbinit files after hitting
this behavior. Another option would be to stop reading/using the value
in Target.cpp, but I see no harm in leaving the setting if someone
really does prefer to have a small cap on their memory read size.
This PR fixes another race condition in
https://github.com/llvm/llvm-project/pull/90930. The failure was found
by @labath with this log: https://paste.debian.net/hidden/30235a5c/:
```
dotest_wrapper. < 15> send packet: $z0,224505,1#65
...
b-remote.async> < 22> send packet: $vCont;s:p1dcf.1dcf#4c
intern-state GDBRemoteClientBase::Lock::Lock sent packet: \x03
b-remote.async> < 818> read packet: $T13thread:p1dcf.1dcf;name:a.out;threads:1dcf,1dd2;jstopinfo:5b7b226e616d65223a22612e6f7574222c22726561736f6e223a227369676e616c222c227369676e616c223a31392c22746964223a373633317d2c7b226e616d65223a22612e6f7574222c22746964223a373633347d5d;thread-pcs:0000000000224505,00007f4e4302119a;00:0000000000000000;01:0000000000000000;02:0100000000000000;03:0000000000000000;04:9084997dfc7f0000;05:a8742a0000000000;06:b084997dfc7f0000;07:6084997dfc7f0000;08:0000000000000000;09:00d7e5424e7f0000;0a:d0d9e5424e7f0000;0b:0202000000000000;0c:80cc290000000000;0d:d8cc1c434e7f0000;0e:2886997dfc7f0000;0f:0100000000000000;10:0545220000000000;11:0602000000000000;12:3300000000000000;13:0000000000000000;14:0000000000000000;15:2b00000000000000;16:80fbe5424e7f0000;17:0000000000000000;18:0000000000000000;19:0000000000000000;reason:signal;#b9
```
It shows an async interrupt "\x03" was sent immediately after `vCont;s`
single step over breakpoint at address `0x224505` (which was disabled
before vCont). And the later stop was still at the original PC
(0x224505) not moving forward.
The investigation shows the failure happens when timeout is short and
async interrupt is sent to lldb-server immediately after vCont so
ptrace() resumes and then async interrupts debuggee immediately so
debuggee does not get a chance to execute and move PC. So it enters stop
mode immediately at original PC. `ThreadPlanStepOverBreakpoint` does not
expect PC not moving and reports stop at the original place.
To fix this, the PR prevents `ThreadPlanSingleThreadTimeout` from being
created during `ThreadPlanStepOverBreakpoint` by introduces a new
`SupportsResumeOthers()` method and `ThreadPlanStepOverBreakpoint`
returns false for it. This makes sense because we should never resume
threads during step over breakpoint anyway otherwise it might cause
other threads to miss breakpoint.
---------
Co-authored-by: jeffreytan81 <jeffreytan@fb.com>
This patch removes all of the Set.* methods from Status.
This cleanup is part of a series of patches that make it harder use the
anti-pattern of keeping a long-lives Status object around and updating
it while dropping any errors it contains on the floor.
This patch is largely NFC, the more interesting next steps this enables
is to:
1. remove Status.Clear()
2. assert that Status::operator=() never overwrites an error
3. remove Status::operator=()
Note that step (2) will bring 90% of the benefits for users, and step
(3) will dramatically clean up the error handling code in various
places. In the end my goal is to convert all APIs that are of the form
` ResultTy DoFoo(Status& error)
`
to
` llvm::Expected<ResultTy> DoFoo()
`
How to read this patch?
The interesting changes are in Status.h and Status.cpp, all other
changes are mostly
` perl -pi -e 's/\.SetErrorString/ = Status::FromErrorString/g' $(git
grep -l SetErrorString lldb/source)
`
plus the occasional manual cleanup.
With this commit, we also hide the implementation details of
`std::invoke`. To do so, the `LibCXXFrameRecognizer` got a couple more
regular expressions.
The regular expression passed into `AddRecognizer` became problematic,
as it was evaluated on the demangled name. Those names also included
result types for C++ symbols. For `std::__invoke` the return type is a
huge `decltype(...)`, making the regular expresison really hard to
write.
Instead, I added support to `AddRecognizer` for matching on the
demangled names without result type and argument types.
By hiding the implementation details of `invoke`, also the back traces
for `std::function` become even nicer, because `std::function` is using
`__invoke` internally.
Co-authored-by: Adrian Prantl <aprantl@apple.com>
This patch adds the option to specify specific memory ranges to be
included in a given core file. The current implementation lets user
specified ranges either be in addition to a certain save style, or
independent of them via the newly added custom enum.
To achieve being inclusive of save style, I've moved from a std::vector
of ranges to a RangeDataVector, and to join overlapping ranges to
prevent duplication of memory ranges in the core file.
As a non function bonus, when SBSavecore was initially created, the
header was included in the lldb-private interfaces, and I've fixed that
and moved it the forward declare as an oversight. CC @bulbazord in case
we need to include that into swift.
TargetProperties.td had a few settings listed as signed integral values,
but the Target.cpp methods reading those values were reading them as
unsigned. e.g. target.max-memory-read-size, some accesses of
target.max-children-count, still today, previously
target.max-string-summary-length.
After Jonas' change to use templates to read these values in
https://reviews.llvm.org/D149774, when the code tried to fetch these
values, we'd eventually end up calling OptionValue::GetAsUInt64 which
checks that the value is actually a UInt64 before returning it; finding
that it was an SInt64, it would drop the user setting and return the
default value. This manifested as a bug that target.max-memory-read-size
is never used for memory read.
target.max-children-count is less straightforward, where one read of
that setting was fetching it as an int64_t, the other as a uint64_t.
I suspect all of these settings were originally marked as SInt64 so a
user could do -1 for "infinite", getting it static_cast to a UINT64_MAX
value along the way. I can't find any documentation for this behavior,
but it seems like something Greg would have done. We've partially lost
that behavior already via
https://github.com/llvm/llvm-project/pull/72233 for
target.max-string-summary-length, and this further removes it.
We're still fetching UInt64's and returning them as uint32_t's but I'm
not overly pressed about someone setting a count/size limit over 4GB.
I added a simple API test for the memory read setting limit.
Compilers and language runtimes often use helper functions that are
fundamentally uninteresting when debugging anything but the
compiler/runtime itself. This patch introduces a user-extensible
mechanism that allows for these frames to be hidden from backtraces and
automatically skipped over when navigating the stack with `up` and
`down`.
This does not affect the numbering of frames, so `f <N>` will still
provide access to the hidden frames. The `bt` output will also print a
hint that frames have been hidden.
My primary motivation for this feature is to hide thunks in the Swift
programming language, but I'm including an example recognizer for
`std::function::operator()` that I wished for myself many times while
debugging LLDB.
rdar://126629381
Example output. (Yes, my proof-of-concept recognizer could hide even
more frames if we had a method that returned the function name without
the return type or I used something that isn't based off regex, but it's
really only meant as an example).
before:
```
(lldb) thread backtrace --filtered=false
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
* frame #0: 0x0000000100001f04 a.out`foo(x=1, y=1) at main.cpp:4:10
frame #1: 0x0000000100003a00 a.out`decltype(std::declval<int (*&)(int, int)>()(std::declval<int>(), std::declval<int>())) std::__1::__invoke[abi:se200000]<int (*&)(int, int), int, int>(__f=0x000000016fdff280, __args=0x000000016fdff224, __args=0x000000016fdff220) at invoke.h:149:25
frame #2: 0x000000010000399c a.out`int std::__1::__invoke_void_return_wrapper<int, false>::__call[abi:se200000]<int (*&)(int, int), int, int>(__args=0x000000016fdff280, __args=0x000000016fdff224, __args=0x000000016fdff220) at invoke.h:216:12
frame #3: 0x0000000100003968 a.out`std::__1::__function::__alloc_func<int (*)(int, int), std::__1::allocator<int (*)(int, int)>, int (int, int)>::operator()[abi:se200000](this=0x000000016fdff280, __arg=0x000000016fdff224, __arg=0x000000016fdff220) at function.h:171:12
frame #4: 0x00000001000026bc a.out`std::__1::__function::__func<int (*)(int, int), std::__1::allocator<int (*)(int, int)>, int (int, int)>::operator()(this=0x000000016fdff278, __arg=0x000000016fdff224, __arg=0x000000016fdff220) at function.h:313:10
frame #5: 0x0000000100003c38 a.out`std::__1::__function::__value_func<int (int, int)>::operator()[abi:se200000](this=0x000000016fdff278, __args=0x000000016fdff224, __args=0x000000016fdff220) const at function.h:430:12
frame #6: 0x0000000100002038 a.out`std::__1::function<int (int, int)>::operator()(this= Function = foo(int, int) , __arg=1, __arg=1) const at function.h:989:10
frame #7: 0x0000000100001f64 a.out`main(argc=1, argv=0x000000016fdff4f8) at main.cpp:9:10
frame #8: 0x0000000183cdf154 dyld`start + 2476
(lldb)
```
after
```
(lldb) bt
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
* frame #0: 0x0000000100001f04 a.out`foo(x=1, y=1) at main.cpp:4:10
frame #1: 0x0000000100003a00 a.out`decltype(std::declval<int (*&)(int, int)>()(std::declval<int>(), std::declval<int>())) std::__1::__invoke[abi:se200000]<int (*&)(int, int), int, int>(__f=0x000000016fdff280, __args=0x000000016fdff224, __args=0x000000016fdff220) at invoke.h:149:25
frame #2: 0x000000010000399c a.out`int std::__1::__invoke_void_return_wrapper<int, false>::__call[abi:se200000]<int (*&)(int, int), int, int>(__args=0x000000016fdff280, __args=0x000000016fdff224, __args=0x000000016fdff220) at invoke.h:216:12
frame #6: 0x0000000100002038 a.out`std::__1::function<int (int, int)>::operator()(this= Function = foo(int, int) , __arg=1, __arg=1) const at function.h:989:10
frame #7: 0x0000000100001f64 a.out`main(argc=1, argv=0x000000016fdff4f8) at main.cpp:9:10
frame #8: 0x0000000183cdf154 dyld`start + 2476
Note: Some frames were hidden by frame recognizers
```
Reapply #100443 and #101770. These were originally reverted due to a
test failure and an MSAN failure. I changed the test attribute to
restrict to x86 (following the other existing tests). I could not
reproduce the test or the MSAN failure and no repo steps were provided.