Operation memref.reinterpret_cast was accept input like:
%out = memref.reinterpret_cast %in to offset: [%offset], sizes: [10],
strides: [1]
: memref<?xf32> to memref<10xf32>
A problem arises: while lowering, the true offset of %out is %offset,
but its data type indicates an offset of 0. Permitting this
inconsistency can result in incorrect outcomes, as certain pass might
erroneously extract the offset from the data type of %out.
This patch fixes this by enforcing that the return value's data type
aligns
with the input parameter.
This commit marks the type converter in `populate...` functions as
`const`. This is useful for debugging.
Patterns already take a `const` type converter. However, some
`populate...` functions do not only add new patterns, but also add
additional type conversion rules. That makes it difficult to find the
place where a type conversion was added in the code base. With this
change, all `populate...` functions that only populate pattern now have
a `const` type converter. Programmers can then conclude from the
function signature that these functions do not register any new type
conversion rules.
Also some minor cleanups around the 1:N dialect conversion
infrastructure, which did not always pass the type converter as a
`const` object internally.
There are some spurious libraries which can be removed.
I'm trying to bundle MLIR/LLVM library dependencies for our own
libraries. We're utilizing cmake function to recursively collect
MLIR/LLVM related dependencies. However, we identified certain library
dependencies as redundant and safe for removal.
- Add support fef memory_space_cast to strided metadata expansion and
narrow type emulation
- Add support for expand_shape to narrow type emulation (like
collapse_shape, it's a noop after linearization) and to
expand-strided-metadata (mirroring the collapse_shape pattern)
- Add support for memref.dealloc to narrow type emulation (it is a
trivial rewrite) and for memref.copy (which is unsupported when it is
used for a layout change but a trivial rewrite otherwise)
This patch adds adds patterns to fold memref alias for
expand_shape/collapse_shape feeding into vector.load/vector.store and
vector.maskedload/vector.maskedstore
In some cases (see https://github.com/iree-org/iree/issues/16285),
`memref.subview` ops can't be folded into transfer ops and sub-byte type
emulation fails. This issue has been blocking a few things, including
the enablement of vector flattening transformations
(https://github.com/iree-org/iree/pull/16456). This PR extends the
existing sub-byte type emulation support of `memref.subview` to handle
multi-dimensional subviews with dynamic offsets and addresses the issues
for some of the `memref.subview` cases that can't be folded.
Co-authored-by: Diego Caballero <diegocaballero@google.com>
This PR adds support for `memref.collapse_shape` to sub-byte type emulation. The `memref.collapse_shape` becomes a no-opt given that we are flattening the memref as part of the emulation (i.e., we are collapsing all the dimensions).
This PR adds a new pattern to the set of patterns used to resolve the offset, sizes and
stride of a memref. Similar to `ExtractStridedMetadataOpSubviewFolder`, the new
pattern resolves strided_metadata(collapse_shape) directly, without introduce a
reshape_cast op.
This commit implements runtime verification for LinalgStructuredOps
using the existing `RuntimeVerifiableOpInterface`. The verification
checks that the runtime sizes of the operands match the runtime sizes
inferred by composing the loop ranges with the op's indexing maps.
This commit implements runtime verification for LinalgStructuredOps
using the existing `RuntimeVerifiableOpInterface`. The verification
checks that the runtime sizes of the operands match the runtime sizes
inferred by composing the loop ranges with the op's indexing maps.
This commit generalizes and cleans up the `ValueBoundsConstraintSet`
API. The API used to provide function overloads for comparing/computing
bounds of:
- index-typed SSA value
- dimension of shaped value
- affine map + operands
This commit removes all overloads. There is now a single entry point for
each `compare` variant and each `computeBound` variant. These functions
now take a `Variable`, which is internally represented as an affine map
and map operands.
This commit also adds support for computing bounds for an affine map +
operands. There was previously no public API for that.
This commit adds the `BufferViewFlowOpInterface` to the bufferization
dialect. This interface can be implemented by ops that operate on
buffers to indicate that a buffer op result and/or region entry block
argument may be the same buffer as a buffer operand (or a view thereof).
This interface is queried by the `BufferViewFlowAnalysis`.
The new interface has two interface methods:
* `populateDependencies`: Implementations use the provided callback to
declare dependencies between operands and op results/region entry block
arguments. E.g., for `%r = arith.select %c, %m1, %m2 : memref<5xf32>`,
the interface implementation should declare two dependencies: %m1 -> %r
and %m2 -> %r.
* `mayBeTerminalBuffer`: An SSA value is a terminal buffer if the buffer
view flow analysis stops at the specified value. E.g., because the value
is a newly allocated buffer or because no further information is
available about the origin of the buffer.
Ops that implement the `RegionBranchOpInterface` or `BranchOpInterface`
do not have to implement the `BufferViewFlowOpInterface`. The buffer
dependencies can be inferred from those two interfaces.
This commit makes the `BufferViewFlowAnalysis` more accurate. For
unknown ops, it conservatively used to declare all combinations of
operands and op results/region entry block arguments as dependencies
(false positives). This is no longer the case. While the analysis is
still a "maybe" analysis with false positives (e.g., when analyzing ops
such as `arith.select` or `scf.if` where the taken branch is not known
at compile time), results and region entry block arguments of unknown
ops are now marked as terminal buffers.
This commit addresses a TODO in `BufferViewFlowAnalysis.cpp`:
```
// TODO: We should have an op interface instead of a hard-coded list of
// interfaces/ops.
```
It is no longer needed to hard-code ops.
The `memref.subview` verifier currently checks result shape, element type, memory space and offset of the result type. However, the strides of the result type are currently not verified. This commit adds verification of result strides for non-rank reducing ops and fixes invalid IR in test cases.
Verification of result strides for ops with rank reductions is more complex (and there could be multiple possible result types). That is left for a separate commit.
Also refactor the implementation a bit:
* If `computeMemRefRankReductionMask` could not compute the dropped dimensions, there must be something wrong with the op. Return `FailureOr` instead of `std::optional`.
* `isRankReducedMemRefType` did much more than just checking whether the op has rank reductions or not. Inline the implementation into the verifier and add better comments.
* `produceSubViewErrorMsg` does not have to be templatized.
* Fix comment and add additional assert to `ExpandStridedMetadata.cpp`, to make sure that the memref.subview verifier is in sync with the memref.subview -> memref.reinterpret_cast lowering.
Note: This change is identical to #79865, but with a fixed comment and an additional assert in `ExpandStridedMetadata.cpp`. (I reverted #79865 in #80116, but the implementation was actually correct, just the comment in `ExpandStridedMetadata.cpp` was confusing.)
This commit renames 4 pattern rewriter API functions:
* `updateRootInPlace` -> `modifyOpInPlace`
* `startRootUpdate` -> `startOpModification`
* `finalizeRootUpdate` -> `finalizeOpModification`
* `cancelRootUpdate` -> `cancelOpModification`
The term "root" is a misnomer. The root is the op that a rewrite pattern
matches against
(https://mlir.llvm.org/docs/PatternRewriter/#root-operation-name-optional).
A rewriter must be notified of all in-place op modifications, not just
in-place modifications of the root
(https://mlir.llvm.org/docs/PatternRewriter/#pattern-rewriter). The old
function names were confusing and have contributed to various broken
rewrite patterns.
Note: The new function names use the term "modify" instead of "update"
for consistency with the `RewriterBase::Listener` terminology
(`notifyOperationModified`).
This change adds (runtime) bounds checks for `memref` ops using the
existing `RuntimeVerifiableOpInterface`. For `memref.load` and
`memref.store`, we check that the indices are in-bounds of the memref's
index space. For `memref.reinterpret_cast` and `memref.subview` we check
that the resulting address space is in-bounds of the input memref's
address space.
This adds a conversion for narrow type emulation of memref.store ops.
The conversion replaces the memref.store with two memref.atomic_rmw ops.
Atomics are used to prevent race conditions on same-byte accesses, in
the event that two threads are storing into the same byte.
Fixes https://github.com/openxla/iree/issues/15370
The contents of a mask on a masked transfer are unaffected by the
particular region of memory being read/stored to, so just forward the
mask in subview folding patterns.
`bufferization.materialize_in_destination` should be used instead. Both
ops bufferize to a memcpy. This change also conceptually cleans up the
memref dialect a bit: the memref dialect no longer contains ops that
operate on tensor values.
/llvm-project/mlir/lib/Dialect/MemRef/Transforms/ResolveShapedTypeResultDims.cpp:98:19: error: comparison of integers of different signs: 'value_type' (aka 'long long') and 'size_t' (aka 'unsigned long') [-Werror,-Wsign-compare]
if (*dimIndex >= reifiedResultShapes[resultNumber].size())
~~~~~~~~~ ^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Do not crash when the input IR is invalid, i.e., when the index of the
dimension operand of a `tensor.dim`/`memref.dim` is out-of-bounds. This
fixes#70180.
The `resolveSourceIndicesCollapseShape` method is used to compute
indices into the source `MemRef` of a `CollapseShapeOp` from the
collapsed indices. This method didn't check for dynamic sizes of the
source shape which led to a crash.
Fix https://github.com/llvm/llvm-project/issues/68483
This patch fixes strided memref offset calculation for emulating narrow
types.
As a side effect, this patch also adds support for a 1-D subviews with
static sizes, static offsets and strides of 1 for testing. Emulate
narrow types pass was not tested for strided memrefs before this patch.
…st)`
`expand-strided-metadata` was missing a pattern to get rid of
`memref.cast`.
The pattern is straight foward:
Produce a new `extract_strided_metadata` with the source of the cast and
fold the static information (sizes, strides, offset) along the way.
This commit implements `LoopLikeOpInterface` on `scf.while`. This
enables LICM (and potentially other transforms) on `scf.while`.
`LoopLikeOpInterface::getLoopBody()` is renamed to `getLoopRegions` and
can now return multiple regions.
Also fix a bug in the default implementation of
`LoopLikeOpInterface::isDefinedOutsideOfLoop()`, which returned "false"
for some values that are defined outside of the loop (in a nested op, in
such a way that the value does not dominate the loop). This interface is
currently only used for LICM and there is no way to trigger this bug, so
no test is added.
This patch refactors the `AtomicRMWOpConverter` class to use
the dedicated operations from Arith dialect instead of using
`cmpf` + `select` pattern.
Also, a test for `minimumf` kind of `atomic_rmw` has been added.
Introduce a simple conversion of a memref.alloc/dealloc pair into an
alloca in the same scope. Expose it as a transform op and a pattern.
Allocas typically lower to stack allocations as opposed to alloc/dealloc
that lower to significantly more expensive malloc/free calls. In
addition, this can be combined with allocation hoisting from loops to
further improve performance.