Commit Graph

629 Commits

Author SHA1 Message Date
Hugo Trachino
a9c417c28a [MLIR][SCF] Fix LoopPeelOp documentation (NFC) (#113179)
As an example, I added annotations to the peel_front unit test.

```
func.func @loop_peel_first_iter_op() {
  // CHECK: %[[C0:.+]] = arith.constant 0
  // CHECK: %[[C41:.+]] = arith.constant 41
  // CHECK: %[[C5:.+]] = arith.constant 5
  // CHECK: %[[C5_0:.+]] = arith.constant 5
  // CHECK: scf.for %{{.+}} = %[[C0]] to %[[C5_0]] step %[[C5]]
  // CHECK:   arith.addi
  // CHECK: scf.for %{{.+}} = %[[C5_0]] to %[[C41]] step %[[C5]]
  // CHECK:   arith.addi
  %0 = arith.constant 0 : index
  %1 = arith.constant 41 : index
  %2 = arith.constant 5 : index
  scf.for %i = %0 to %1 step %2 {
    arith.addi %i, %i : index
  }
  return
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["arith.addi"]} in %arg1 : (!transform.any_op) -> !transform.any_op
    %1 = transform.get_parent_op %0 {op_name = "scf.for"} : (!transform.any_op) -> !transform.op<"scf.for">
    %main_loop, %remainder = transform.loop.peel %1 {peel_front = true} : (!transform.op<"scf.for">) -> (!transform.op<"scf.for">, !transform.op<"scf.for">)
    transform.annotate %main_loop "main_loop" : !transform.op<"scf.for">
    transform.annotate %remainder "remainder" : !transform.op<"scf.for">
    transform.yield
  }
}
```
Gives :
```
  func.func @loop_peel_first_iter_op() {
    %c0 = arith.constant 0 : index
    %c41 = arith.constant 41 : index
    %c5 = arith.constant 5 : index
    %c5_0 = arith.constant 5 : index
    scf.for %arg0 = %c0 to %c5_0 step %c5 {
      %0 = arith.addi %arg0, %arg0 : index
    } {remainder}  // The first iteration loop (second result) has been annotated remainder
    scf.for %arg0 = %c5_0 to %c41 step %c5 {
      %0 = arith.addi %arg0, %arg0 : index
    } {main_loop} // The main loop (first result) has been annotated main_loop
    return
  }
```

---------

Co-authored-by: Andrzej Warzyński <andrzej.warzynski@gmail.com>
2024-10-29 15:47:13 +00:00
Matthias Springer
1549a0c183 [mlir][SCF] Remove scf-bufferize pass (#113840)
The dialect conversion-based bufferization passes have been migrated to
One-Shot Bufferize about two years ago. To clean up the code base, this
commit removes the `scf-bufferize` pass, one of the few remaining parts
of the old infrastructure. Most bufferization passes have already been
removed.

Note for LLVM integration: If you depend on this pass, migrate to
One-Shot Bufferize or copy the pass to your codebase.
2024-10-29 09:10:30 +09:00
Max191
1ae24460d2 [mlir] Add forall canonicalization to replace constant induction vars (#112764)
Adds a canonicalization pattern for scf.forall that replaces constant
induction variables with a constant index. There is a similar
canonicalization that completely removes constant induction variables
from the loop, but that pattern does not apply on foralls with mappings,
so this one is necessary for those cases.

---------

Signed-off-by: Max Dawkins <max.dawkins@gmail.com>
2024-10-18 15:21:01 -04:00
SJW
8da5aa16f6 [mlir][SCF] Fix dynamic loop pipeline peeling for num_stages > total_iters (#112418)
When pipelining an `scf.for` with dynamic loop bounds, the epilogue
ramp-down must align with the prologue when num_stages >
total_iterations.

For example:
```
scf.for (0..ub) {
  load(i)
  add(i)
  store(i)
}
```
When num_stages=3 the pipeline follows:
```
load(0)  -  add(0)      -  scf.for (0..ub-2)    -  store(ub-2)
            load(1)     -                       -  add(ub-1)     -  store(ub-1)

```
The trailing `store(ub-2)`, `i=ub-2`, must align with the ramp-up for
`i=0` when `ub < num_stages-1`, so the index `i` should be `max(0,
ub-2)` and each subsequent index is an increment. The predicate must
also handle this scenario, so it becomes `predicate[0] =
total_iterations > epilogue_stage`.
2024-10-15 13:13:49 -07:00
Sasha Lopoukhine
36a405519b [mlir][SCF] Multiply lower bound in loop range folding (#111875)
Fixes #83482
2024-10-14 20:15:12 +02:00
Matthias Springer
634c57d738 [mlir][SCF][NFC] scf.for/scf.while: rename builder args (#111493)
Rename builder args to make them consistent with the `args` in the
TableGen definition.
2024-10-08 10:22:58 +02:00
BARRET
1666d13078 [CMake]: Remove unnecessary dependencies on LLVM/MLIR (#111255)
Previous https://github.com/llvm/llvm-project/pull/110362 (reverted)
caused breakage. Here is the PR with fix.

My build cmdline:

```
cmake ../llvm \
    -G Ninja \
    -DCMAKE_BUILD_TYPE=Release \
    -DCMAKE_INSTALL_PREFIX=install \
    -DCMAKE_C_COMPILER=gcc-9 \
    -DCMAKE_CXX_COMPILER=g++-9 \
    -DCMAKE_CUDA_COMPILER=$(which nvcc) \
    -DLLVM_ENABLE_LLD=OFF \
    -DLLVM_ENABLE_ASSERTIONS=ON \
    -DLLVM_BUILD_EXAMPLES=ON \
    -DCOMPILER_RT_BUILD_LIBFUZZER=OFF \
    -DLLVM_CCACHE_BUILD=ON \
    -DMLIR_ENABLE_BINDINGS_PYTHON=ON \
    -DBUILD_SHARED_LIBS=ON \
    -DLLVM_ENABLE_PROJECTS='llvm;mlir'
```
2024-10-07 15:52:43 +02:00
Matthias Springer
206fad0e21 [mlir][NFC] Mark type converter in populate... functions as const (#111250)
This commit marks the type converter in `populate...` functions as
`const`. This is useful for debugging.

Patterns already take a `const` type converter. However, some
`populate...` functions do not only add new patterns, but also add
additional type conversion rules. That makes it difficult to find the
place where a type conversion was added in the code base. With this
change, all `populate...` functions that only populate pattern now have
a `const` type converter. Programmers can then conclude from the
function signature that these functions do not register any new type
conversion rules.

Also some minor cleanups around the 1:N dialect conversion
infrastructure, which did not always pass the type converter as a
`const` object internally.
2024-10-05 21:32:40 +02:00
Quinn Dawkins
9144fed31b [mlir] Add option for a cleanup pattern set to SCF tiling helper (#109554)
The SCF helper for tiling an operation implementing the TilingInterface
and greedily fusing consumers requires an uninterrupted chain of
operations implementing the tiling interface to succeed. There can be
cases with intermediate ops that don't implement the interface but have
producers that could be fused if various canonicalization/simplification
patterns could run in between fusion steps.

This adds an option to SCFTileAndFuseOptions for a pattern set to run
between fusion steps to the ops that result from fusion/tiling. Removed
and newly inserted slices are tracked for continued fusion applications.

See this RFC for more discussion:

https://discourse.llvm.org/t/rfc-split-fusion-portions-of-the-tilinginterface-into-a-new-interface/81155
2024-10-04 14:42:55 -04:00
Mehdi Amini
8b47711e84 Revert "CMake: Remove unnecessary dependencies on LLVM/MLIR" (#110594)
Reverts llvm/llvm-project#110362

Multiple bots are broken.
2024-10-01 00:44:21 +02:00
BARRET
4980f2177e CMake: Remove unnecessary dependencies on LLVM/MLIR (#110362)
There are some spurious libraries which can be removed.

I'm trying to bundle MLIR/LLVM library dependencies for our own
libraries. We're utilizing cmake function to recursively collect
MLIR/LLVM related dependencies. However, we identified certain library
dependencies as redundant and safe for removal.
2024-09-30 23:57:13 +02:00
Abhishek Varma
b8c974f093 [MLIR][TilingInterface] Extend consumer fusion for multi-use of producer shared by terminator ops (#110105)
-- This commit extends consumer fusion to take place even if the
producer has multiple uses.
-- The multiple uses of the producer essentially means that besides the
consumer op in concern, the only other uses of the producer are
allowed in :-
   1. scf.yield
   2. tensor.parallel_insert_slice

Signed-off-by: Abhishek Varma <abhvarma@amd.com>
2024-09-30 14:51:06 +05:30
MaheshRavishankar
cca32174fe [mlir][SCF] Use Affine ops for indexing math. (#108450)
For index type of induction variable, the indexing math is better
represented using affine ops such as `affine.delinearize_index`.

This also further demonstrates that some of these `affine` ops might
need to move to a different dialect. For one these ops only support
`IndexType` when they should be able to work with any integer type.

This change also includes some canonicalization patterns for
`affine.delinearize_index` operation to
1) Drop unit `basis` values
2) Remove the `delinearize_index` op when the `linear_index` is a loop
induction variable of a normalized loop and the `basis` is of size 1 and
is also the upper bound of the normalized loop.

---------

Signed-off-by: MaheshRavishankar <mahesh.ravishankar@gmail.com>
2024-09-27 18:25:41 -07:00
Quinn Dawkins
a3b34e67e6 [mlir][vector] Add pattern for dropping unit dims from for loops (#109585)
This adds a pattern for dropping unit dims from the iter_args of scf.for
ops using vector.shape_cast. This composes with the other patterns for
dropping unit dims from elementwise ops and transposes.
2024-09-27 11:43:27 -04:00
SJW
7645d9c77d [mlir][scf] Fix loop iteration calculation for negative step in LoopPipelining (#110035)
This fixes loop iteration count calculation if the step is
    a negative value, where we should adjust the added
    delta from `step-1` to `step+1` when doing the ceil div.
2024-09-25 13:32:12 -07:00
SJW
fa089b014b [SCF] Fixed epilogue predicates in loop pipelining (#108964)
The computed loop iteration is zero based, so only check it is less than
zero. This fixes the case when lower bound is not zero.
2024-09-23 22:06:19 -07:00
Adrian Kuegel
b3a2208c56 [mlir] Apply ClangTidy fixes.
- Prefer to check empty() instead of size() == 0.
- Remove unused using declarations.
2024-09-17 11:02:20 +00:00
Kazu Hirata
e509e8777a [SCF] Avoid repeated hash lookups (NFC) (#108793) 2024-09-16 06:42:51 -07:00
MaheshRavishankar
d5f0969c96 [mlir][TilingInterface] Avoid looking at operands for getting slices to continue tile + fuse. (#107882)
Current implementation of `scf::tileConsumerAndFuseProducerUsingSCF`
looks at operands of tiled/tiled+fused operations to see if they are
produced by `extract_slice` operations to populate the worklist used to
continue fusion. This implicit assumption does not always work. Instead
make the implementations of `getTiledImplementation` return the slices
to use to continue fusion.

This is a breaking change

- To continue to get the same behavior of
`scf::tileConsumerAndFuseProducerUsingSCF`, change all out-of-tree
implementation of `TilingInterface::getTiledImplementation` to return
the slices to continue fusion on. All in-tree implementations have been
adapted to this.
- This change touches parts that required a simplification to the
`ControlFn` in `scf::SCFTileAndFuseOptions`. It now returns a
`std::optional<scf::SCFTileAndFuseOptions::ControlFnResult>` object that
should be `std::nullopt` if fusion is not to be performed.

Signed-off-by: MaheshRavishankar <mahesh.revishankar@gmail.com>
2024-09-11 22:15:43 -07:00
Yun-Fly
a9ba1b6dd5 [mlir][scf] Extend consumer fuse to single nested scf.for (#108318)
Refactor current consumer fusion based on `addInitOperandsToLoopNest` to support single nested `scf.for`, E.g.

```
%0 = scf.for() {
  %1 = scf.for() {
     tiledProducer
  }
  yield %1
}
%2 = consumer ins(%0)
```

Compared with #94190, this PR fix build failure by making C++17 happy.
2024-09-12 12:01:23 +08:00
Kazu Hirata
335538c271 Revert "[mlir][scf] Extend consumer fuse to single nested scf.for (#94190)"
This reverts commit 2d4bdfba96.

A build breakage is reported at:

https://lab.llvm.org/buildbot/#/builders/138/builds/3524
2024-09-11 19:18:37 -07:00
Yun-Fly
2d4bdfba96 [mlir][scf] Extend consumer fuse to single nested scf.for (#94190)
Refactor current consumer fusion based on `addInitOperandsToLoopNest` to support single nested `scf.for`, E.g.

```
%0 = scf.for() {
  %1 = scf.for() {
     tiledProducer
  }
  yield %1
}
%2 = consumer ins(%0)
```
2024-09-12 10:02:57 +08:00
SJW
18926666f5 [MLIR][SCF] Loop pipelining fails on failed predication (no assert) (#107442)
The SCFLoopPipelining allows predication on peeled or loop ops. When the
predicationFn returns a nullptr this signifies the op type is
unsupported and the pipeliner fails except in `emitPrologue` where it
asserts.

This patch fixes handling in the prologue to gracefully fail.
2024-09-05 11:46:18 -07:00
SJW
ebf0599314 [MLIR][SCF] Add support for loop pipeline peeling for dynamic loops. (#106436)
Allow speculative execution and predicate results per stage.
2024-09-04 12:24:58 -07:00
Hongtao Yu
c08c6a71cf [mlir][scf] Allow unrolling loops with integer-typed IV. (#106164)
SCF loops now can operate on integer-typed IV, thus I'm changing the
loop unroller correspondingly.
2024-08-29 09:20:59 -07:00
MaheshRavishankar
00620abc7f [mlir][SCF] Allow canonicalization of zero-trip count scf.forall with empty mapping. (#105793)
Current folding of one-trip count loop does not kick in with an empty
mapping. Enable this for empty mapping.

Signed-off-by: MaheshRavishankar <mahesh.ravishankar@gmail.com>
2024-08-23 12:05:52 -07:00
pawelszczerbuk
7c9008115a [SCF][PIPELINE] Handle the case when values from the peeled prologue may escape out of the loop (#105755)
Previously the values in the peeled prologue that weren't treated with
the `predicateFn` were passed to the loop body without any other
predication. If those values are later used outside of the loop body,
they may be incorrect if the num iterations is smaller than num stages -
1. We need similar masking for those, as is done in the main loop body,
using already existing predicates.
2024-08-23 08:23:11 -07:00
Amir Bishara
d7fc779aac [mlir][SCF]-Fix loop coalescing with iteration arguements (#105488)
Fix a bug found when coalescing loops which have iteration arguments,
such that the inner loop's terminator may have operands of the inner
loop iteration arguments which are about to be replaced by the outer
loop's iteration arguments.

The current flow leads to crush within the IR code.
2024-08-22 14:39:43 -07:00
Andrey Timonin
ed8cfb6513 [NFC][mlir][scf] Fix misspelling of replace (#101683) 2024-08-15 11:40:55 +02:00
Nikhil Kalra
84cc1865ef [mlir] Support DialectRegistry extension comparison (#101119)
`PassManager::run` loads the dependent dialects for each pass into the
current context prior to invoking the individual passes. If the
dependent dialect is already loaded into the context, this should be a
no-op. However, if there are extensions registered in the
`DialectRegistry`, the dependent dialects are unconditionally registered
into the context.

This poses a problem for dynamic pass pipelines, however, because they
will likely be executing while the context is in an immutable state
(because of the parent pass pipeline being run).

To solve this, we'll update the extension registration API on
`DialectRegistry` to require a type ID for each extension that is
registered. Then, instead of unconditionally registered dialects into a
context if extensions are present, we'll check against the extension
type IDs already present in the context's internal `DialectRegistry`.
The context will only be marked as dirty if there are net-new extension
types present in the `DialectRegistry` populated by
`PassManager::getDependentDialects`.

Note: this PR removes the `addExtension` overload that utilizes
`std::function` as the parameter. This is because `std::function` is
copyable and potentially allocates memory for the contained function so
we can't use the function pointer as the unique type ID for the
extension.

Downstream changes required:
- Existing `DialectExtension` subclasses will need a type ID to be
registered for each subclass. More details on how to register a type ID
can be found here:
8b68e06731/mlir/include/mlir/Support/TypeID.h (L30)
- Existing uses of the `std::function` overload of `addExtension` will
need to be refactored into dedicated `DialectExtension` classes with
associated type IDs. The attached `std::function` can either be inlined
into or called directly from `DialectExtension::apply`.

---------

Co-authored-by: Mehdi Amini <joker.eph@gmail.com>
2024-08-06 01:32:36 +02:00
Kazu Hirata
5262865aac [mlir] Construct SmallVector with ArrayRef (NFC) (#101896) 2024-08-04 11:43:05 -07:00
MaheshRavishankar
6740d701bd [mlir][Linalg] Deprecate linalg::tileToForallOp and linalg::tileToForallOpUsingTileSizes (#91878)
The implementation of these methods are legacy and they are removed in
favor of using the `scf::tileUsingSCF` methods as replacements. To get
the latter on par with requirements of the deprecated methods, the
tiling allows one to specify the maximum number of tiles to use instead
of specifying the tile sizes. When tiling to `scf.forall` this
specification is used to generate the `num_threads` version of the
operation.

A slight deviation from previous implementation is that the deprecated
method always generated the `num_threads` variant of the `scf.forall`
operation. Instead now this is driven by the tiling options specified.
This reduces the indexing math generated when the tile sizes are
specified.

**Moving from `linalg::tileToForallOp` to `scf::tileUsingSCF`**

```
OpBuilder b;
TilingInterface op;
ArrayRef<OpFoldResult> numThreads;
ArrayAttr mapping;
FailureOr<ForallTilingResult> result =linalg::tileToForallOp(b, op, numThreads, mapping);
```

can be replaced by
```
scf::SCFTilingOptions options;
options.setNumThreads(numThreads);
options.setLoopType(scf::SCFTilingOptions::LoopType::ForallOp);
options.setMapping(mapping.getValue()); /*note the difference that setMapping takes an ArrayRef<Attribute> */
FailureOr<scf::SCFTilingResult> result = scf::tileUsingSCF(b, op, options);
```

This generates the `numThreads` version of the `scf.forall` for the
inter-tile loops, i.e.

```
... = scf.forall (%arg0, %arg1) in (%nt0, %nt1) shared_outs(...)
```

**Moving from `linalg::tileToForallOpUsingTileSizes` to
`scf::tileUsingSCF`**

```
OpBuilder b;
TilingInterface op;
ArrayRef<OpFoldResult> tileSizes;
ArrayAttr mapping;
FailureOr<ForallTilingResult> result =linalg::tileToForallOpUsingTileSizes(b, op, tileSizes, mapping);
```

can be replaced by
```
scf::SCFTilingOptions options;
options.setTileSizes(tileSizes);
options.setLoopType(scf::SCFTilingOptions::LoopType::ForallOp);
options.setMapping(mapping.getValue()); /*note the difference that setMapping takes an ArrayRef<Attribute> */
FailureOr<scf::SCFTilingResult> result = scf::tileUsingSCF(b, op, options);
```

Also note that `linalg::tileToForallOpUsingTileSizes` would effectively
call the `linalg::tileToForallOp` by computing the `numThreads` from the
`op` and `tileSizes` and generate the `numThreads` version of the
`scf.forall`. That is not the case anymore. Instead this will directly
generate the `tileSizes` version of the `scf.forall` op

```
... = scf.forall(%arg0, %arg1) = (%lb0, %lb1) to (%ub0, %ub1) step(%step0, %step1) shared_outs(...)
```

If you actually want to use the `numThreads` version, it is upto the
caller to compute the `numThreads` and set `options.setNumThreads`
instead of `options.setTileSizes`. Note that there is a slight
difference in the num threads version and tile size version. The former
requires an additional `affine.max` on the tile size to ensure
non-negative tile sizes. When lowering to `numThreads` version this
`affine.max` is not needed since by construction the tile sizes are
non-negative. In previous implementations, the `numThreads` version
generated when using the `linalg::tileToForallOpUsingTileSizes` method
would avoid generating the `affine.max` operation. To get the same
state, downstream users will have to additionally normalize the
`scf.forall` operation.

**Changes to `transform.structured.tile_using_forall`**

The transform dialect op that called into `linalg::tileToForallOp` and
`linalg::tileToForallOpUsingTileSizes` have been modified to call
`scf::tileUsingSCF`. The transform dialect op always generates the
`numThreads` version of the `scf.forall` op. So when `tile_sizes` are
specified for the transform dialect op, first the `tile_sizes` version
of the `scf.forall` is generated by the `scf::tileUsingSCF` method which
is then further normalized to get back to the same state. So there is no
functional change to `transform.structured.tile_using_forall`. It always
generates the `numThreads` version of the `scf.forall` op (as it did
before this change).

---------

Signed-off-by: MaheshRavishankar <mahesh.ravishankar@gmail.com>
2024-07-31 12:32:07 -07:00
Victor Perez
e8f07cdb57 [MLIR][SCF] Define -scf-rotate-while pass (#99850)
Define SCF dialect patterns rotating `scf.while` loops leveraging
existing `mlir::scf::wrapWhileLoopInZeroTripCheck`. `forceCreateCheck`
is always `false` as the pattern would lead to an infinite recursion
otherwise.

This pattern rotates `scf.while` ops, mutating them from "while" loops to
"do-while" loops. A guard checking the condition for the first iteration
is inserted. Note this guard can be optimized away if the compiler can
prove the loop will be executed at least once.

Using this pattern, the following while loop:

```mlir
scf.while (%arg0 = %init) : (i32) -> i64 {
  %val = .., %arg0 : i64
  %cond = arith.cmpi .., %arg0 : i32
  scf.condition(%cond) %val : i64
} do {
^bb0(%arg1: i64):
  %next = .., %arg1 : i32
  scf.yield %next : i32
}
```

Can be transformed into:

``` mlir
%pre_val = .., %init : i64
%pre_cond = arith.cmpi .., %init : i32
scf.if %pre_cond -> i64 {
  %res = scf.while (%arg1 = %va0) : (i64) -> i64 {
    // Original after block
    %next = .., %arg1 : i32
    // Original before block
    %val = .., %next : i64
    %cond = arith.cmpi .., %next : i32
    scf.condition(%cond) %val : i64
  } do {
  ^bb0(%arg2: i64):
    %scf.yield %arg2 : i32
  }
  scf.yield %res : i64
} else {
  scf.yield %pre_val : i64
}
```

The test pass for `wrapWhileLoopInZeroTripCheck` has been modified to
use the new pattern when `forceCreateCheck=false`.

---------

Signed-off-by: Victor Perez <victor.perez@codeplay.com>
2024-07-30 10:06:01 +02:00
Keyi Zhang
0b3943f3bb [MLIR][SCF] fix scf.index_switch fold convergence (#98535) (#98680)
If the `scf.index_switch` op has no result, the current fold logic
results in an infinite loop (see #98535). The is because `fold`
mechanism does not support *erasing* zero-result ops. This PR moves the
fold logic to a canonicalizer and fix the issue.
2024-07-16 08:37:04 +02:00
Matthias Springer
acc159aea1 [mlir][Transforms] Dialect conversion: Fix missing source materialization (#97903)
This commit fixes a bug in the dialect conversion. During a 1:N
signature conversion, the dialect conversion did not insert a cast back
to the original block argument type, producing invalid IR.

See `test-block-legalization.mlir`: Without this commit, the operand
type of the op changes because an `unrealized_conversion_cast` is
missing:
```
"test.consumer_of_complex"(%v) : (!llvm.struct<(f64, f64)>) -> ()
```

To implement this fix, it was necessary to change the meaning of
argument materializations. An argument materialization now maps from the
new block argument types to the original block argument type. (It now
behaves almost like a source materialization.) This also addresses a
`FIXME` in the code base:
```
// FIXME: The current argument materialization hook expects the original
// output type, even though it doesn't use that as the actual output type
// of the generated IR. The output type is just used as an indicator of
// the type of materialization to do. This behavior is really awkward in
// that it diverges from the behavior of the other hooks, and can be
// easily misunderstood. We should clean up the argument hooks to better
// represent the desired invariants we actually care about.
```

It is no longer necessary to distinguish between the "output type" and
the "original output type".

Most type converter are already written according to the new API. (Most
implementations use the same conversion functions as for source
materializations.) One exception is the MemRef-to-LLVM type converter,
which materialized an `!llvm.struct` based on the elements of a memref
descriptor. It still does that, but casts the `!llvm.struct` back to the
original memref type. The dialect conversion inserts a target
materialization (to `!llvm.struct`) which cancels out with the other
cast.

This commit also fixes a bug in `computeNecessaryMaterializations`. The
implementation did not account for the possibility that a value was
replaced multiple times. E.g., replace `a` by `b`, then `b` by `c`.

This commit also adds a transform dialect op to populate SCF-to-CF
patterns. This transform op was needed to write a test case. The bug
described here appears only during a complex interplay of 1:N signature
conversions and op replacements. (I was not able to trigger it with ops
and patterns from the `test` dialect without duplicating the `scf.if`
pattern.)

Note for LLVM integration: Make sure that all
`addArgument/Source/TargetMaterialization` functions produce an SSA of
the specified type.

Depends on #98743.
2024-07-15 17:04:56 +02:00
Alexander Belyaev
97a2bd8415 Revert "[mlir][loops] Reland Refactor LoopFuseSiblingOp and support parallel fusion #94391 (#97607)"
This reverts commit edbc0e30a9.

Reason for rollback. ASAN complains about this PR:

==4320==ERROR: AddressSanitizer: heap-use-after-free on address 0x502000006cd8 at pc 0x55e2978d63cf bp 0x7ffe6431c2b0 sp 0x7ffe6431c2a8
READ of size 8 at 0x502000006cd8 thread T0
    #0 0x55e2978d63ce in map<llvm::MutableArrayRef<mlir::BlockArgument> &, llvm::MutableArrayRef<mlir::BlockArgument>, nullptr> mlir/include/mlir/IR/IRMapping.h:40:11
    #1 0x55e2978d63ce in mlir::createFused(mlir::LoopLikeOpInterface, mlir::LoopLikeOpInterface, mlir::RewriterBase&, std::__u::function<llvm::SmallVector<mlir::Value, 6u> (mlir::OpBuilder&, mlir::Location, llvm::ArrayRef<mlir::BlockArgument>)>, llvm::function_ref<void (mlir::RewriterBase&, mlir::LoopLikeOpInterface, mlir::LoopLikeOpInterface&, mlir::IRMapping)>) mlir/lib/Interfaces/LoopLikeInterface.cpp:156:11
    #2 0x55e2952a614b in mlir::fuseIndependentSiblingForLoops(mlir::scf::ForOp, mlir::scf::ForOp, mlir::RewriterBase&) mlir/lib/Dialect/SCF/Utils/Utils.cpp:1398:43
    #3 0x55e291480c6f in mlir::transform::LoopFuseSiblingOp::apply(mlir::transform::TransformRewriter&, mlir::transform::TransformResults&, mlir::transform::TransformState&) mlir/lib/Dialect/SCF/TransformOps/SCFTransformOps.cpp:482:17
    #4 0x55e29149ed5e in mlir::transform::detail::TransformOpInterfaceInterfaceTraits::Model<mlir::transform::LoopFuseSiblingOp>::apply(mlir::transform::detail::TransformOpInterfaceInterfaceTraits::Concept const*, mlir::Operation*, mlir::transform::TransformRewriter&, mlir::transform::TransformResults&, mlir::transform::TransformState&) blaze-out/k8-opt-asan/bin/mlir/include/mlir/Dialect/Transform/Interfaces/TransformInterfaces.h.inc:477:56
    #5 0x55e297494a60 in apply blaze-out/k8-opt-asan/bin/mlir/include/mlir/Dialect/Transform/Interfaces/TransformInterfaces.cpp.inc:61:14
    #6 0x55e297494a60 in mlir::transform::TransformState::applyTransform(mlir::transform::TransformOpInterface) mlir/lib/Dialect/Transform/Interfaces/TransformInterfaces.cpp:953:48
    #7 0x55e294646a8d in applySequenceBlock(mlir::Block&, mlir::transform::FailurePropagationMode, mlir::transform::TransformState&, mlir::transform::TransformResults&) mlir/lib/Dialect/Transform/IR/TransformOps.cpp:1788:15
    #8 0x55e29464f927 in mlir::transform::NamedSequenceOp::apply(mlir::transform::TransformRewriter&, mlir::transform::TransformResults&, mlir::transform::TransformState&) mlir/lib/Dialect/Transform/IR/TransformOps.cpp:2155:10
    #9 0x55e2945d28ee in mlir::transform::detail::TransformOpInterfaceInterfaceTraits::Model<mlir::transform::NamedSequenceOp>::apply(mlir::transform::detail::TransformOpInterfaceInterfaceTraits::Concept const*, mlir::Operation*, mlir::transform::TransformRewriter&, mlir::transform::TransformResults&, mlir::transform::TransformState&) blaze-out/k8-opt-asan/bin/mlir/include/mlir/Dialect/Transform/Interfaces/TransformInterfaces.h.inc:477:56
    #10 0x55e297494a60 in apply blaze-out/k8-opt-asan/bin/mlir/include/mlir/Dialect/Transform/Interfaces/TransformInterfaces.cpp.inc:61:14
    #11 0x55e297494a60 in mlir::transform::TransformState::applyTransform(mlir::transform::TransformOpInterface) mlir/lib/Dialect/Transform/Interfaces/TransformInterfaces.cpp:953:48
    #12 0x55e2974a5fe2 in mlir::transform::applyTransforms(mlir::Operation*, mlir::transform::TransformOpInterface, mlir::RaggedArray<llvm::PointerUnion<mlir::Operation*, mlir::Attribute, mlir::Value>> const&, mlir::transform::TransformOptions const&, bool) mlir/lib/Dialect/Transform/Interfaces/TransformInterfaces.cpp:2016:16
    #13 0x55e2945888d7 in mlir::transform::applyTransformNamedSequence(mlir::RaggedArray<llvm::PointerUnion<mlir::Operation*, mlir::Attribute, mlir::Value>>, mlir::transform::TransformOpInterface, mlir::ModuleOp, mlir::transform::TransformOptions const&) mlir/lib/Dialect/Transform/Transforms/TransformInterpreterUtils.cpp:234:10
    #14 0x55e294582446 in (anonymous namespace)::InterpreterPass::runOnOperation() mlir/lib/Dialect/Transform/Transforms/InterpreterPass.cpp:147:16
    #15 0x55e2978e93c6 in operator() mlir/lib/Pass/Pass.cpp:527:17
    #16 0x55e2978e93c6 in void llvm::function_ref<void ()>::callback_fn<mlir::detail::OpToOpPassAdaptor::run(mlir::Pass*, mlir::Operation*, mlir::AnalysisManager, bool, unsigned int)::$_1>(long) llvm/include/llvm/ADT/STLFunctionalExtras.h:45:12
    #17 0x55e2978e207a in operator() llvm/include/llvm/ADT/STLFunctionalExtras.h:68:12
    #18 0x55e2978e207a in executeAction<mlir::PassExecutionAction, mlir::Pass &> mlir/include/mlir/IR/MLIRContext.h:275:7
    #19 0x55e2978e207a in mlir::detail::OpToOpPassAdaptor::run(mlir::Pass*, mlir::Operation*, mlir::AnalysisManager, bool, unsigned int) mlir/lib/Pass/Pass.cpp:521:21
    #20 0x55e2978e5fbf in runPipeline mlir/lib/Pass/Pass.cpp:593:16
    #21 0x55e2978e5fbf in mlir::PassManager::runPasses(mlir::Operation*, mlir::AnalysisManager) mlir/lib/Pass/Pass.cpp:904:10
    #22 0x55e2978e5b65 in mlir::PassManager::run(mlir::Operation*) mlir/lib/Pass/Pass.cpp:884:60
    #23 0x55e291ebb460 in performActions(llvm::raw_ostream&, std::__u::shared_ptr<llvm::SourceMgr> const&, mlir::MLIRContext*, mlir::MlirOptMainConfig const&) mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:408:17
    #24 0x55e291ebabd9 in processBuffer mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:481:9
    #25 0x55e291ebabd9 in operator() mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:548:12
    #26 0x55e291ebabd9 in llvm::LogicalResult llvm::function_ref<llvm::LogicalResult (std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::raw_ostream&)>::callback_fn<mlir::MlirOptMain(llvm::raw_ostream&, std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, mlir::DialectRegistry&, mlir::MlirOptMainConfig const&)::$_0>(long, std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::raw_ostream&) llvm/include/llvm/ADT/STLFunctionalExtras.h:45:12
    #27 0x55e297b1cffe in operator() llvm/include/llvm/ADT/STLFunctionalExtras.h:68:12
    #28 0x55e297b1cffe in mlir::splitAndProcessBuffer(std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::function_ref<llvm::LogicalResult (std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::raw_ostream&)>, llvm::raw_ostream&, llvm::StringRef, llvm::StringRef)::$_0::operator()(llvm::StringRef) const mlir/lib/Support/ToolUtilities.cpp:86:16
    #29 0x55e297b1c9c5 in interleave<const llvm::StringRef *, (lambda at mlir/lib/Support/ToolUtilities.cpp:79:23), (lambda at llvm/include/llvm/ADT/STLExtras.h:2147:49), void> llvm/include/llvm/ADT/STLExtras.h:2125:3
    #30 0x55e297b1c9c5 in interleave<llvm::SmallVector<llvm::StringRef, 8U>, (lambda at mlir/lib/Support/ToolUtilities.cpp:79:23), llvm::raw_ostream, llvm::StringRef> llvm/include/llvm/ADT/STLExtras.h:2147:3
    #31 0x55e297b1c9c5 in mlir::splitAndProcessBuffer(std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::function_ref<llvm::LogicalResult (std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::raw_ostream&)>, llvm::raw_ostream&, llvm::StringRef, llvm::StringRef) mlir/lib/Support/ToolUtilities.cpp:89:3
    #32 0x55e291eb0cf0 in mlir::MlirOptMain(llvm::raw_ostream&, std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, mlir::DialectRegistry&, mlir::MlirOptMainConfig const&) mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:551:10
    #33 0x55e291eb115c in mlir::MlirOptMain(int, char**, llvm::StringRef, llvm::StringRef, mlir::DialectRegistry&) mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:589:14
    #34 0x55e291eb15f8 in mlir::MlirOptMain(int, char**, llvm::StringRef, mlir::DialectRegistry&) mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:605:10
    #35 0x55e29130d1be in main mlir/tools/mlir-opt/mlir-opt.cpp:311:33
    #36 0x7fbcf3fff3d3 in __libc_start_main (/usr/grte/v5/lib64/libc.so.6+0x613d3) (BuildId: 9a996398ce14a94560b0c642eb4f6e94)
    #37 0x55e2912365a9 in _start /usr/grte/v5/debug-src/src/csu/../sysdeps/x86_64/start.S:120

0x502000006cd8 is located 8 bytes inside of 16-byte region [0x502000006cd0,0x502000006ce0)
freed by thread T0 here:
    #0 0x55e29130b7e2 in operator delete(void*, unsigned long) compiler-rt/lib/asan/asan_new_delete.cpp:155:3
    #1 0x55e2979eb657 in __libcpp_operator_delete<void *, unsigned long>
    #2 0x55e2979eb657 in __do_deallocate_handle_size<>
    #3 0x55e2979eb657 in __libcpp_deallocate
    #4 0x55e2979eb657 in deallocate
    #5 0x55e2979eb657 in deallocate
    #6 0x55e2979eb657 in operator()
    #7 0x55e2979eb657 in ~vector
    #8 0x55e2979eb657 in mlir::Block::~Block() mlir/lib/IR/Block.cpp:24:1
    #9 0x55e2979ebc17 in deleteNode llvm/include/llvm/ADT/ilist.h:42:39
    #10 0x55e2979ebc17 in erase llvm/include/llvm/ADT/ilist.h:205:5
    #11 0x55e2979ebc17 in erase llvm/include/llvm/ADT/ilist.h:209:39
    #12 0x55e2979ebc17 in mlir::Block::erase() mlir/lib/IR/Block.cpp:67:28
    #13 0x55e297aef978 in mlir::RewriterBase::eraseBlock(mlir::Block*) mlir/lib/IR/PatternMatch.cpp:245:10
    #14 0x55e297af0563 in mlir::RewriterBase::inlineBlockBefore(mlir::Block*, mlir::Block*, llvm::ilist_iterator<llvm::ilist_detail::node_options<mlir::Operation, false, false, void, false, void>, false, false>, mlir::ValueRange) mlir/lib/IR/PatternMatch.cpp:331:3
    #15 0x55e297af06d8 in mlir::RewriterBase::mergeBlocks(mlir::Block*, mlir::Block*, mlir::ValueRange) mlir/lib/IR/PatternMatch.cpp:341:3
    #16 0x55e297036608 in mlir::scf::ForOp::replaceWithAdditionalYields(mlir::RewriterBase&, mlir::ValueRange, bool, std::__u::function<llvm::SmallVector<mlir::Value, 6u> (mlir::OpBuilder&, mlir::Location, llvm::ArrayRef<mlir::BlockArgument>)> const&) mlir/lib/Dialect/SCF/IR/SCF.cpp:575:12
    #17 0x55e2970673ca in mlir::detail::LoopLikeOpInterfaceInterfaceTraits::Model<mlir::scf::ForOp>::replaceWithAdditionalYields(mlir::detail::LoopLikeOpInterfaceInterfaceTraits::Concept const*, mlir::Operation*, mlir::RewriterBase&, mlir::ValueRange, bool, std::__u::function<llvm::SmallVector<mlir::Value, 6u> (mlir::OpBuilder&, mlir::Location, llvm::ArrayRef<mlir::BlockArgument>)> const&) blaze-out/k8-opt-asan/bin/mlir/include/mlir/Interfaces/LoopLikeInterface.h.inc:658:56
    #18 0x55e2978d5feb in replaceWithAdditionalYields blaze-out/k8-opt-asan/bin/mlir/include/mlir/Interfaces/LoopLikeInterface.cpp.inc:105:14
    #19 0x55e2978d5feb in mlir::createFused(mlir::LoopLikeOpInterface, mlir::LoopLikeOpInterface, mlir::RewriterBase&, std::__u::function<llvm::SmallVector<mlir::Value, 6u> (mlir::OpBuilder&, mlir::Location, llvm::ArrayRef<mlir::BlockArgument>)>, llvm::function_ref<void (mlir::RewriterBase&, mlir::LoopLikeOpInterface, mlir::LoopLikeOpInterface&, mlir::IRMapping)>) mlir/lib/Interfaces/LoopLikeInterface.cpp:135:14
    #20 0x55e2952a614b in mlir::fuseIndependentSiblingForLoops(mlir::scf::ForOp, mlir::scf::ForOp, mlir::RewriterBase&) mlir/lib/Dialect/SCF/Utils/Utils.cpp:1398:43
    #21 0x55e291480c6f in mlir::transform::LoopFuseSiblingOp::apply(mlir::transform::TransformRewriter&, mlir::transform::TransformResults&, mlir::transform::TransformState&) mlir/lib/Dialect/SCF/TransformOps/SCFTransformOps.cpp:482:17
    #22 0x55e29149ed5e in mlir::transform::detail::TransformOpInterfaceInterfaceTraits::Model<mlir::transform::LoopFuseSiblingOp>::apply(mlir::transform::detail::TransformOpInterfaceInterfaceTraits::Concept const*, mlir::Operation*, mlir::transform::TransformRewriter&, mlir::transform::TransformResults&, mlir::transform::TransformState&) blaze-out/k8-opt-asan/bin/mlir/include/mlir/Dialect/Transform/Interfaces/TransformInterfaces.h.inc:477:56
    #23 0x55e297494a60 in apply blaze-out/k8-opt-asan/bin/mlir/include/mlir/Dialect/Transform/Interfaces/TransformInterfaces.cpp.inc:61:14
    #24 0x55e297494a60 in mlir::transform::TransformState::applyTransform(mlir::transform::TransformOpInterface) mlir/lib/Dialect/Transform/Interfaces/TransformInterfaces.cpp:953:48
    #25 0x55e294646a8d in applySequenceBlock(mlir::Block&, mlir::transform::FailurePropagationMode, mlir::transform::TransformState&, mlir::transform::TransformResults&) mlir/lib/Dialect/Transform/IR/TransformOps.cpp:1788:15
    #26 0x55e29464f927 in mlir::transform::NamedSequenceOp::apply(mlir::transform::TransformRewriter&, mlir::transform::TransformResults&, mlir::transform::TransformState&) mlir/lib/Dialect/Transform/IR/TransformOps.cpp:2155:10
    #27 0x55e2945d28ee in mlir::transform::detail::TransformOpInterfaceInterfaceTraits::Model<mlir::transform::NamedSequenceOp>::apply(mlir::transform::detail::TransformOpInterfaceInterfaceTraits::Concept const*, mlir::Operation*, mlir::transform::TransformRewriter&, mlir::transform::TransformResults&, mlir::transform::TransformState&) blaze-out/k8-opt-asan/bin/mlir/include/mlir/Dialect/Transform/Interfaces/TransformInterfaces.h.inc:477:56
    #28 0x55e297494a60 in apply blaze-out/k8-opt-asan/bin/mlir/include/mlir/Dialect/Transform/Interfaces/TransformInterfaces.cpp.inc:61:14
    #29 0x55e297494a60 in mlir::transform::TransformState::applyTransform(mlir::transform::TransformOpInterface) mlir/lib/Dialect/Transform/Interfaces/TransformInterfaces.cpp:953:48
    #30 0x55e2974a5fe2 in mlir::transform::applyTransforms(mlir::Operation*, mlir::transform::TransformOpInterface, mlir::RaggedArray<llvm::PointerUnion<mlir::Operation*, mlir::Attribute, mlir::Value>> const&, mlir::transform::TransformOptions const&, bool) mlir/lib/Dialect/Transform/Interfaces/TransformInterfaces.cpp:2016:16
    #31 0x55e2945888d7 in mlir::transform::applyTransformNamedSequence(mlir::RaggedArray<llvm::PointerUnion<mlir::Operation*, mlir::Attribute, mlir::Value>>, mlir::transform::TransformOpInterface, mlir::ModuleOp, mlir::transform::TransformOptions const&) mlir/lib/Dialect/Transform/Transforms/TransformInterpreterUtils.cpp:234:10
    #32 0x55e294582446 in (anonymous namespace)::InterpreterPass::runOnOperation() mlir/lib/Dialect/Transform/Transforms/InterpreterPass.cpp:147:16
    #33 0x55e2978e93c6 in operator() mlir/lib/Pass/Pass.cpp:527:17
    #34 0x55e2978e93c6 in void llvm::function_ref<void ()>::callback_fn<mlir::detail::OpToOpPassAdaptor::run(mlir::Pass*, mlir::Operation*, mlir::AnalysisManager, bool, unsigned int)::$_1>(long) llvm/include/llvm/ADT/STLFunctionalExtras.h:45:12
    #35 0x55e2978e207a in operator() llvm/include/llvm/ADT/STLFunctionalExtras.h:68:12
    #36 0x55e2978e207a in executeAction<mlir::PassExecutionAction, mlir::Pass &> mlir/include/mlir/IR/MLIRContext.h:275:7
    #37 0x55e2978e207a in mlir::detail::OpToOpPassAdaptor::run(mlir::Pass*, mlir::Operation*, mlir::AnalysisManager, bool, unsigned int) mlir/lib/Pass/Pass.cpp:521:21
    #38 0x55e2978e5fbf in runPipeline mlir/lib/Pass/Pass.cpp:593:16
    #39 0x55e2978e5fbf in mlir::PassManager::runPasses(mlir::Operation*, mlir::AnalysisManager) mlir/lib/Pass/Pass.cpp:904:10
    #40 0x55e2978e5b65 in mlir::PassManager::run(mlir::Operation*) mlir/lib/Pass/Pass.cpp:884:60
    #41 0x55e291ebb460 in performActions(llvm::raw_ostream&, std::__u::shared_ptr<llvm::SourceMgr> const&, mlir::MLIRContext*, mlir::MlirOptMainConfig const&) mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:408:17
    #42 0x55e291ebabd9 in processBuffer mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:481:9
    #43 0x55e291ebabd9 in operator() mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:548:12
    #44 0x55e291ebabd9 in llvm::LogicalResult llvm::function_ref<llvm::LogicalResult (std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::raw_ostream&)>::callback_fn<mlir::MlirOptMain(llvm::raw_ostream&, std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, mlir::DialectRegistry&, mlir::MlirOptMainConfig const&)::$_0>(long, std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::raw_ostream&) llvm/include/llvm/ADT/STLFunctionalExtras.h:45:12
    #45 0x55e297b1cffe in operator() llvm/include/llvm/ADT/STLFunctionalExtras.h:68:12
    #46 0x55e297b1cffe in mlir::splitAndProcessBuffer(std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::function_ref<llvm::LogicalResult (std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::raw_ostream&)>, llvm::raw_ostream&, llvm::StringRef, llvm::StringRef)::$_0::operator()(llvm::StringRef) const mlir/lib/Support/ToolUtilities.cpp:86:16
    #47 0x55e297b1c9c5 in interleave<const llvm::StringRef *, (lambda at mlir/lib/Support/ToolUtilities.cpp:79:23), (lambda at llvm/include/llvm/ADT/STLExtras.h:2147:49), void> llvm/include/llvm/ADT/STLExtras.h:2125:3
    #48 0x55e297b1c9c5 in interleave<llvm::SmallVector<llvm::StringRef, 8U>, (lambda at mlir/lib/Support/ToolUtilities.cpp:79:23), llvm::raw_ostream, llvm::StringRef> llvm/include/llvm/ADT/STLExtras.h:2147:3
    #49 0x55e297b1c9c5 in mlir::splitAndProcessBuffer(std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::function_ref<llvm::LogicalResult (std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::raw_ostream&)>, llvm::raw_ostream&, llvm::StringRef, llvm::StringRef) mlir/lib/Support/ToolUtilities.cpp:89:3
    #50 0x55e291eb0cf0 in mlir::MlirOptMain(llvm::raw_ostream&, std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, mlir::DialectRegistry&, mlir::MlirOptMainConfig const&) mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:551:10
    #51 0x55e291eb115c in mlir::MlirOptMain(int, char**, llvm::StringRef, llvm::StringRef, mlir::DialectRegistry&) mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:589:14

previously allocated by thread T0 here:
    #0 0x55e29130ab5d in operator new(unsigned long) compiler-rt/lib/asan/asan_new_delete.cpp:86:3
    #1 0x55e2979ed5d4 in __libcpp_operator_new<unsigned long>
    #2 0x55e2979ed5d4 in __libcpp_allocate
    #3 0x55e2979ed5d4 in allocate
    #4 0x55e2979ed5d4 in __allocate_at_least<std::__u::allocator<mlir::BlockArgument> >
    #5 0x55e2979ed5d4 in __split_buffer
    #6 0x55e2979ed5d4 in mlir::BlockArgument* std::__u::vector<mlir::BlockArgument, std::__u::allocator<mlir::BlockArgument>>::__push_back_slow_path<mlir::BlockArgument const&>(mlir::BlockArgument const&)
    #7 0x55e2979ec0f2 in push_back
    #8 0x55e2979ec0f2 in mlir::Block::addArgument(mlir::Type, mlir::Location) mlir/lib/IR/Block.cpp:154:13
    #9 0x55e29796e457 in parseRegionBody mlir/lib/AsmParser/Parser.cpp:2172:34
    #10 0x55e29796e457 in (anonymous namespace)::OperationParser::parseRegion(mlir::Region&, llvm::ArrayRef<mlir::OpAsmParser::Argument>, bool) mlir/lib/AsmParser/Parser.cpp:2121:7
    #11 0x55e29796b25e in (anonymous namespace)::CustomOpAsmParser::parseRegion(mlir::Region&, llvm::ArrayRef<mlir::OpAsmParser::Argument>, bool) mlir/lib/AsmParser/Parser.cpp:1785:16
    #12 0x55e297035742 in mlir::scf::ForOp::parse(mlir::OpAsmParser&, mlir::OperationState&) mlir/lib/Dialect/SCF/IR/SCF.cpp:521:14
    #13 0x55e291322c18 in llvm::ParseResult llvm::detail::UniqueFunctionBase<llvm::ParseResult, mlir::OpAsmParser&, mlir::OperationState&>::CallImpl<llvm::ParseResult (*)(mlir::OpAsmParser&, mlir::OperationState&)>(void*, mlir::OpAsmParser&, mlir::OperationState&) llvm/include/llvm/ADT/FunctionExtras.h:220:12
    #14 0x55e29795bea3 in operator() llvm/include/llvm/ADT/FunctionExtras.h:384:12
    #15 0x55e29795bea3 in callback_fn<llvm::unique_function<llvm::ParseResult (mlir::OpAsmParser &, mlir::OperationState &)> > llvm/include/llvm/ADT/STLFunctionalExtras.h:45:12
    #16 0x55e29795bea3 in operator() llvm/include/llvm/ADT/STLFunctionalExtras.h:68:12
    #17 0x55e29795bea3 in parseOperation mlir/lib/AsmParser/Parser.cpp:1521:9
    #18 0x55e29795bea3 in parseCustomOperation mlir/lib/AsmParser/Parser.cpp:2017:19
    #19 0x55e29795bea3 in (anonymous namespace)::OperationParser::parseOperation() mlir/lib/AsmParser/Parser.cpp:1174:10
    #20 0x55e297971d20 in parseBlockBody mlir/lib/AsmParser/Parser.cpp:2296:9
    #21 0x55e297971d20 in (anonymous namespace)::OperationParser::parseBlock(mlir::Block*&) mlir/lib/AsmParser/Parser.cpp:2226:12
    #22 0x55e29796e4f5 in parseRegionBody mlir/lib/AsmParser/Parser.cpp:2184:7
    #23 0x55e29796e4f5 in (anonymous namespace)::OperationParser::parseRegion(mlir::Region&, llvm::ArrayRef<mlir::OpAsmParser::Argument>, bool) mlir/lib/AsmParser/Parser.cpp:2121:7
    #24 0x55e29796b25e in (anonymous namespace)::CustomOpAsmParser::parseRegion(mlir::Region&, llvm::ArrayRef<mlir::OpAsmParser::Argument>, bool) mlir/lib/AsmParser/Parser.cpp:1785:16
    #25 0x55e29796b2cf in (anonymous namespace)::CustomOpAsmParser::parseOptionalRegion(mlir::Region&, llvm::ArrayRef<mlir::OpAsmParser::Argument>, bool) mlir/lib/AsmParser/Parser.cpp:1796:12
    #26 0x55e2978d89ff in mlir::function_interface_impl::parseFunctionOp(mlir::OpAsmParser&, mlir::OperationState&, bool, mlir::StringAttr, llvm::function_ref<mlir::Type (mlir::Builder&, llvm::ArrayRef<mlir::Type>, llvm::ArrayRef<mlir::Type>, mlir::function_interface_impl::VariadicFlag, std::__u::basic_string<char, std::__u::char_traits<char>, std::__u::allocator<char>>&)>, mlir::StringAttr, mlir::StringAttr) mlir/lib/Interfaces/FunctionImplementation.cpp:232:14
    #27 0x55e2969ba41d in mlir::func::FuncOp::parse(mlir::OpAsmParser&, mlir::OperationState&) mlir/lib/Dialect/Func/IR/FuncOps.cpp:203:10
    #28 0x55e291322c18 in llvm::ParseResult llvm::detail::UniqueFunctionBase<llvm::ParseResult, mlir::OpAsmParser&, mlir::OperationState&>::CallImpl<llvm::ParseResult (*)(mlir::OpAsmParser&, mlir::OperationState&)>(void*, mlir::OpAsmParser&, mlir::OperationState&) llvm/include/llvm/ADT/FunctionExtras.h:220:12
    #29 0x55e29795bea3 in operator() llvm/include/llvm/ADT/FunctionExtras.h:384:12
    #30 0x55e29795bea3 in callback_fn<llvm::unique_function<llvm::ParseResult (mlir::OpAsmParser &, mlir::OperationState &)> > llvm/include/llvm/ADT/STLFunctionalExtras.h:45:12
    #31 0x55e29795bea3 in operator() llvm/include/llvm/ADT/STLFunctionalExtras.h:68:12
    #32 0x55e29795bea3 in parseOperation mlir/lib/AsmParser/Parser.cpp:1521:9
    #33 0x55e29795bea3 in parseCustomOperation mlir/lib/AsmParser/Parser.cpp:2017:19
    #34 0x55e29795bea3 in (anonymous namespace)::OperationParser::parseOperation() mlir/lib/AsmParser/Parser.cpp:1174:10
    #35 0x55e297959b78 in parse mlir/lib/AsmParser/Parser.cpp:2725:20
    #36 0x55e297959b78 in mlir::parseAsmSourceFile(llvm::SourceMgr const&, mlir::Block*, mlir::ParserConfig const&, mlir::AsmParserState*, mlir::AsmParserCodeCompleteContext*) mlir/lib/AsmParser/Parser.cpp:2785:41
    #37 0x55e29790d5c2 in mlir::parseSourceFile(std::__u::shared_ptr<llvm::SourceMgr> const&, mlir::Block*, mlir::ParserConfig const&, mlir::LocationAttr*) mlir/lib/Parser/Parser.cpp:46:10
    #38 0x55e291ebbfe2 in parseSourceFile<mlir::ModuleOp, const std::__u::shared_ptr<llvm::SourceMgr> &> mlir/include/mlir/Parser/Parser.h:159:14
    #39 0x55e291ebbfe2 in parseSourceFile<mlir::ModuleOp> mlir/include/mlir/Parser/Parser.h:189:10
    #40 0x55e291ebbfe2 in mlir::parseSourceFileForTool(std::__u::shared_ptr<llvm::SourceMgr> const&, mlir::ParserConfig const&, bool) mlir/include/mlir/Tools/ParseUtilities.h:31:12
    #41 0x55e291ebb263 in performActions(llvm::raw_ostream&, std::__u::shared_ptr<llvm::SourceMgr> const&, mlir::MLIRContext*, mlir::MlirOptMainConfig const&) mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:383:33
    #42 0x55e291ebabd9 in processBuffer mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:481:9
    #43 0x55e291ebabd9 in operator() mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:548:12
    #44 0x55e291ebabd9 in llvm::LogicalResult llvm::function_ref<llvm::LogicalResult (std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::raw_ostream&)>::callback_fn<mlir::MlirOptMain(llvm::raw_ostream&, std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, mlir::DialectRegistry&, mlir::MlirOptMainConfig const&)::$_0>(long, std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::raw_ostream&) llvm/include/llvm/ADT/STLFunctionalExtras.h:45:12
    #45 0x55e297b1cffe in operator() llvm/include/llvm/ADT/STLFunctionalExtras.h:68:12
    #46 0x55e297b1cffe in mlir::splitAndProcessBuffer(std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::function_ref<llvm::LogicalResult (std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::raw_ostream&)>, llvm::raw_ostream&, llvm::StringRef, llvm::StringRef)::$_0::operator()(llvm::StringRef) const mlir/lib/Support/ToolUtilities.cpp:86:16
    #47 0x55e297b1c9c5 in interleave<const llvm::StringRef *, (lambda at mlir/lib/Support/ToolUtilities.cpp:79:23), (lambda at llvm/include/llvm/ADT/STLExtras.h:2147:49), void> llvm/include/llvm/ADT/STLExtras.h:2125:3
    #48 0x55e297b1c9c5 in interleave<llvm::SmallVector<llvm::StringRef, 8U>, (lambda at mlir/lib/Support/ToolUtilities.cpp:79:23), llvm::raw_ostream, llvm::StringRef> llvm/include/llvm/ADT/STLExtras.h:2147:3
    #49 0x55e297b1c9c5 in mlir::splitAndProcessBuffer(std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::function_ref<llvm::LogicalResult (std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, llvm::raw_ostream&)>, llvm::raw_ostream&, llvm::StringRef, llvm::StringRef) mlir/lib/Support/ToolUtilities.cpp:89:3
    #50 0x55e291eb0cf0 in mlir::MlirOptMain(llvm::raw_ostream&, std::__u::unique_ptr<llvm::MemoryBuffer, std::__u::default_delete<llvm::MemoryBuffer>>, mlir::DialectRegistry&, mlir::MlirOptMainConfig const&) mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:551:10
    #51 0x55e291eb115c in mlir::MlirOptMain(int, char**, llvm::StringRef, llvm::StringRef, mlir::DialectRegistry&) mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:589:14
    #52 0x55e291eb15f8 in mlir::MlirOptMain(int, char**, llvm::StringRef, mlir::DialectRegistry&) mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:605:10
    #53 0x55e29130d1be in main mlir/tools/mlir-opt/mlir-opt.cpp:311:33
    #54 0x7fbcf3fff3d3 in __libc_start_main (/usr/grte/v5/lib64/libc.so.6+0x613d3) (BuildId: 9a996398ce14a94560b0c642eb4f6e94)
    #55 0x55e2912365a9 in _start /usr/grte/v5/debug-src/src/csu/../sysdeps/x86_64/start.S:120

SUMMARY: AddressSanitizer: heap-use-after-free mlir/include/mlir/IR/IRMapping.h:40:11 in map<llvm::MutableArrayRef<mlir::BlockArgument> &, llvm::MutableArrayRef<mlir::BlockArgument>, nullptr>
Shadow bytes around the buggy address:
  0x502000006a00: fa fa 00 fa fa fa 00 00 fa fa 00 fa fa fa 00 fa
  0x502000006a80: fa fa 00 fa fa fa 00 00 fa fa 00 00 fa fa 00 00
  0x502000006b00: fa fa 00 00 fa fa 00 00 fa fa 00 fa fa fa 00 fa
  0x502000006b80: fa fa 00 fa fa fa 00 fa fa fa 00 00 fa fa 00 00
  0x502000006c00: fa fa 00 00 fa fa 00 00 fa fa 00 00 fa fa fd fa
=>0x502000006c80: fa fa fd fa fa fa fd fd fa fa fd[fd]fa fa fd fd
  0x502000006d00: fa fa 00 fa fa fa 00 fa fa fa 00 fa fa fa 00 fa
  0x502000006d80: fa fa 00 fa fa fa 00 fa fa fa 00 fa fa fa 00 fa
  0x502000006e00: fa fa 00 fa fa fa 00 fa fa fa 00 00 fa fa 00 fa
  0x502000006e80: fa fa 00 fa fa fa 00 00 fa fa 00 fa fa fa 00 fa
  0x502000006f00: fa fa 00 fa fa fa 00 fa fa fa 00 fa fa fa 00 fa
Shadow byte legend (one shadow byte represents 8 application bytes):
  Addressable:           00
  Partially addressable: 01 02 03 04 05 06 07
  Heap left redzone:       fa
  Freed heap region:       fd
  Stack left redzone:      f1
  Stack mid redzone:       f2
  Stack right redzone:     f3
  Stack after return:      f5
  Stack use after scope:   f8
  Global redzone:          f9
  Global init order:       f6
  Poisoned by user:        f7
  Container overflow:      fc
  Array cookie:            ac
  Intra object redzone:    bb
  ASan internal:           fe
  Left alloca redzone:     ca
  Right alloca redzone:    cb
==4320==ABORTING
2024-07-04 09:24:23 +02:00
srcarroll
edbc0e30a9 [mlir][loops] Reland Refactor LoopFuseSiblingOp and support parallel fusion #94391 (#97607)
The refactor had a bug where the fused loop was inserted in an incorrect
location. This patch fixes the bug and relands the original PR
https://github.com/llvm/llvm-project/pull/94391.

This patch refactors code related to LoopFuseSiblingOp transform in
attempt to reduce duplicate common code. The aim is to refactor as much
as possible to a functions on LoopLikeOpInterfaces, but this is still a
work in progress. A full refactor will require more additions to the
LoopLikeOpInterface.

In addition, scf.parallel fusion support has been added.
2024-07-03 14:03:54 -05:00
srcarroll
4e78d3a6b1 Revert "Refactor LoopFuseSiblingOp and support parallel fusion (#94391)" (#97523)
This reverts commit 6820b08718.
2024-07-03 01:27:19 -05:00
srcarroll
6820b08718 Refactor LoopFuseSiblingOp and support parallel fusion (#94391)
This patch refactors code related to `LoopFuseSiblingOp` transform in
attempt to reduce duplicate common code. The aim is to refactor as much
as possible to a functions on `LoopLikeOpInterface`s, but this is still
a work in progress. A full refactor will require more additions to the
`LoopLikeOpInterface`.

 In addition, `scf.parallel` fusion support has been added.
2024-07-02 11:12:51 -05:00
Yun-Fly
7ef08eacd5 [mlir][scf] Extend option to yield replacement for multiple results case (#93144)
This patch extends the functionality of yielding replacement for multiple 
results case and adds another optional argument called `yieldResultNumber` 
indicating which result(s) need yield. If not given, all of results will be yield 
by default.
2024-06-28 20:43:52 +08:00
Aviad Cohen
cb8bd6f772 Introduce new Unroll And Jam loop transform for SCF/Affine loops (#94142)
Unroll And Jam was supported in affine dialect long time ago using pass.
This commit exposes the pattern using transform and in addition adds
partial support for SCF loops.
2024-06-21 15:48:11 +03:00
donald chen
2c1ae801e1 [mlir][side effect] refactor(*): Include more precise side effects (#94213)
This patch adds more precise side effects to the current ops with memory
effects, allowing us to determine which OpOperand/OpResult/BlockArgument
the
operation reads or writes, rather than just recording the reading and
writing
of values. This allows for convenient use of precise side effects to
achieve
analysis and optimization.

Related discussions:
https://discourse.llvm.org/t/rfc-add-operandindex-to-sideeffect-instance/79243
2024-06-19 22:10:34 +08:00
MaheshRavishankar
b99d0b3440 [mlir][TilingInterface] Update PartialReductionOpInterface to get it more in line with TilingInterface. (#95460)
The `TilingInterface` methods have return values that allow the
interface implementation to return multiple operations, and also return
tiled values explicitly. This is to avoid the assumption that the
interface needs to return a single operation and this operations result
are the expected tiled values. Make the
`PartialReductionOpInterface::tileToPartialReduction` return
`TilingResult` as well for the same reason.

Similarly make the `PartialReductionOpInterface::mergeReductions` also
return a list of generated operations and values to use as replacements.

This is just a refactoring to allow for deprecation of
`linalg::tileReductionUsingForall` with `scf::tileReductionUsingSCF`
method.
2024-06-18 09:07:29 -07:00
Aviad Cohen
d7e4813a32 [mlir][scf]: Copy old attributes of old ForOp in replaceWithAdditionalYields (#95502) 2024-06-15 06:09:33 +03:00
Aviad Cohen
2ecb1ab6d7 [mlir][scf]: Removed LoopParams struct and used Range instead (NFC) (#95501) 2024-06-14 21:56:17 +03:00
Aviad Cohen
85e8d62758 [mlir][scf]: Expose emitNormalizedLoopBounds/denormalizeInductionVariable util functions (#94429)
Also adjusted `LoopParams` to use OpFoldResult instead of Value.
2024-06-14 06:49:43 +03:00
Ramkumar Ramachandra
0fb216fb2f mlir/MathExtras: consolidate with llvm/MathExtras (#95087)
This patch is part of a project to move the Presburger library into
LLVM.
2024-06-11 23:00:02 +01:00
srcarroll
6b4c122847 [mlir][loops] Add getters for multi dim loop variables in LoopLikeOpInterface (#94516)
This patch adds `getLoopInductionVars`, `getLoopLowerBounds`,
`getLoopBounds`, `getLoopSteps` interface methods to
`LoopLIkeOpInterface`. The corresponding single value versions have been
moved to shared class declaration and have been implemented based on the
new interface methods.
2024-06-07 18:25:43 -05:00
Fotis Kounelis
192cd68512 Add checks before hoisting out in loop pipelining (#90872)
Currently, during a loop pipelining transformation, operations may be
hoisted out without any checks on the loop bounds, which leads to
incorrect transformations and unexpected behaviour. The following [issue
](https://github.com/llvm/llvm-project/issues/90870) describes the
problem more extensively, including an example.
The proposed fix adds some check in the loop bounds before and applies
the maximum hoisting.
2024-06-07 11:46:01 +02:00
Spenser Bauman
0b665c3dd2 [mlir][scf] Implement conversion from scf.forall to scf.parallel (#94109)
There is currently no path to lower scf.forall to scf.parallel with the
goal of targeting the OpenMP dialect.

In the SCF->ControlFlow conversion, scf.forall is briefly converted to
scf.parallel, but the scf.parallel is lowered directly to a sequential
loop. This makes experimenting with scf.forall for CPU execution
difficult.

This change factors out the rewrite in the SCF->ControlFlow pass into a
utility function that can then be used in the SCF->ControlFlow lowering
and via a separate -scf-forall-to-parallel pass.

---------

Co-authored-by: Spenser Bauman <sabauma@fastmail>
2024-06-04 15:41:09 -04:00