Commit Graph

473 Commits

Author SHA1 Message Date
Mehdi Amini
c8b837ad8c [MLIR][Python] Add the --mlir-print-ir-tree-dir to the C and Python API (#117339) 2024-11-23 20:17:25 +01:00
Perry Gibson
21df32511b [mlir,python] Expose replaceAllUsesExcept to Python bindings (#115850)
Problem originally described in [the forums
here](https://discourse.llvm.org/t/mlir-python-expose-replaceallusesexcept/83068/1).

Using the MLIR Python bindings, the method
[`replaceAllUsesWith`](https://mlir.llvm.org/doxygen/classmlir_1_1Value.html#ac56b0fdb6246bcf7fa1805ba0eb71aa2)
for `Value` is exposed, e.g.,

```python
orig_value.replace_all_uses_with(
    new_value               
)
```

However, in my use-case I am separating a block into multiple blocks, so
thus want to exclude certain Operations from having their Values
replaced (since I want them to diverge).

Within Value, we have
[`replaceAllUsesExcept`](https://mlir.llvm.org/doxygen/classmlir_1_1Value.html#a9ec8d5c61f8a6aada4062f609372cce4),
where we can pass the Operations which should be skipped.

This is not currently exposed in the Python bindings: this PR fixes
this. Adds `replace_all_uses_except`, which works with individual
Operations, and lists of Operations.
2024-11-19 19:00:57 -05:00
annuasd
47ef5c4b7f [mlir][Bindings] Fix missing return value of functions and incorrect type hint in pyi. (#116731)
The zero points of UniformQuantizedPerAxisType should be List[int].
And there are two methods missing return value.

Co-authored-by: 牛奕博 <niuyibo@niuyibodeMacBook-Pro.local>
2024-11-19 15:24:39 -06:00
Matthias Springer
e17c91341b [mlir][python] Add T.tf32 and missing tests for tf32 (#116725) 2024-11-19 11:00:35 +09:00
Krzysztof Drewniak
31aa7f34e0 [mlir][Affine] Let affine.[de]linearize_index omit outer bounds (#116103)
The affine.delinearize_index and affine.linearize_index operations, as
currently defined, require providing a length N basis to [de]linearize N
values. The first value in this basis is never used during lowering and
is unused during lowering. (Note that, even though it isn't used during
lowering it can still be used to, for example, remove length-1 outputs
from a delinearize).

This dead value makes sense in the original context of these operations,
which is linearizing or de-linearizing indexes to memref<>s, vector<>s,
and other shaped types, where that outer bound is avaliable and may be
useful for analysis.

However, other usecases exist where the outer bound is not known. For
example:

    %thread_id_x = gpu.thread_id x : index
%0:3 = affine.delinearize_index %thread_id_x into (4, 16) : index,index,
index

In this code, we don't know the upper bound of the thread ID, but we do
want to construct the ?x4x16 grid of delinearized values in order to
further partition the GPU threads.

In order to support such usecases, we broaden the definition of
affine.delinearize_index and affine.linearize_index to make the outer
bound optional.

In the case of affine.delinearize_index, where the number of results is
a function of the size of the passed-in basis, we augment all existing
builders with a `hasOuterBound` argument, which, for backwards
compatibilty and to preserve the natural usage of the op, defaults to
`true`. If this flag is true, the op returns one result per basis
element, if it is false, it returns one extra result in position 0.

We also update existing canonicalization patterns (and move one of them
into the folder) to handle these cases. Note that disagreements about
the outer bound now no longer prevent delinearize/linearize
cancelations.
2024-11-18 15:41:54 -06:00
Jinyun (Joey) Ye
618f231a6d [MLIR][Transform] Consolidate result of structured.split into one list (#111171)
Follow-up a review comment from
https://github.com/llvm/llvm-project/pull/82792#discussion_r1604925239
as a separate PR:

	E.g.:
	```
	%0:2 = transform.structured.split
	```
	is changed to
	```
	%t = transform.structured.split
	%0:2 = transform.split_handle %t
	```
2024-11-15 10:53:34 +08:00
Amy Wang
d50fbe43c9 [MLIR][Python] Python binding support for AffineIfOp (#108323)
Fix the AffineIfOp's default builder such that it takes in an
IntegerSetAttr. AffineIfOp has skipDefaultBuilders=1 which effectively
skips the creation of the default AffineIfOp::builder on the C++ side.
(AffineIfOp has two custom OpBuilder defined in the
extraClassDeclaration.) However, on the python side, _affine_ops_gen.py
shows that the default builder is being created, but it does not accept
IntegerSet and thus is useless. This fix at line 411 makes the default
python AffineIfOp builder take in an IntegerSet input and does not
impact the C++ side of things.
2024-11-13 16:27:46 -05:00
Kasper Nielsen
1824e45cd7 [MLIR,Python] Support converting boolean numpy arrays to and from mlir attributes (unrevert) (#115481)
This PR re-introduces the functionality of
https://github.com/llvm/llvm-project/pull/113064, which was reverted in
0a68171b3c
due to memory lifetime issues.

Notice that I was not able to re-produce the ASan results myself, so I
have not been able to verify that this PR really fixes the issue.

---

Currently it is unsupported to:
1. Convert a MlirAttribute with type i1 to a numpy array
2. Convert a boolean numpy array to a MlirAttribute

Currently the entire Python application violently crashes with a quite
poor error message https://github.com/pybind/pybind11/issues/3336

The complication handling these conversions, is that MlirAttribute
represent booleans as a bit-packed i1 type, whereas numpy represents
booleans as a byte array with 8 bit used per boolean.

This PR proposes the following approach:
1. When converting a i1 typed MlirAttribute to a numpy array, we can not
directly use the underlying raw data backing the MlirAttribute as a
buffer to Python, as done for other types. Instead, a copy of the data
is generated using numpy's unpackbits function, and the result is send
back to Python.
2. When constructing a MlirAttribute from a numpy array, first the
python data is read as a uint8_t to get it converted to the endianess
used internally in mlir. Then the booleans are bitpacked using numpy's
bitpack function, and the bitpacked array is saved as the MlirAttribute
representation.
2024-11-13 01:23:10 -05:00
Md Asghar Ahmad Shahid
3ad0148020 [MLIR][Linalg] Re-land linalg.matmul move to ODS. + Remove/update failing obsolete OpDSL tests. (#115319)
The earlier PR(https://github.com/llvm/llvm-project/pull/104783) which
introduces
transpose and broadcast semantic to linalg.matmul was reverted due to
two failing
OpDSL test for linalg.matmul.

Since linalg.matmul is now defined using TableGen ODS instead of
Python-based OpDSL,
these test started failing and needs to be removed/updated.

This commit removes/updates the failing obsolete tests from below files.
All other files
were part of earlier PR and just cherry picked.
    "mlir/test/python/integration/dialects/linalg/opsrun.py"
    "mlir/test/python/integration/dialects/transform.py"

---------

Co-authored-by: Renato Golin <rengolin@systemcall.eu>
2024-11-07 14:51:02 +00:00
Dmitri Gribenko
0a68171b3c Revert "[MLIR,Python] Support converting boolean numpy arrays to and from mlir attributes (#113064)"
This reverts commit fb7bf7a5ac. There is
an ASan issue here, see the discussion on
https://github.com/llvm/llvm-project/pull/113064.
2024-11-05 16:08:51 +01:00
Krzysztof Drewniak
704808c275 [mlir][affine] Add static basis support to affine.delinearize (#113846)
This commit makes `affine.delinealize` join other indexing operators,
like `vector.extract`, which store a mixed static/dynamic set of sizes,
offsets, or such. In this case, the `basis` (the set of values that will
be used to decompose the linear index) is now stored as an array of
index attributes where the basis is statically known, eliminating the
need to cretae constants.

This commit also adds copies of the delinearize utility in the affine
dialect to allow it to take an array of `OpFoldResult`s and extends te
DynamicIndexList parser/printer to allow specifying the delimiters in
tablegen (this is needed to avoid breaking existing syntax).

---------

Co-authored-by: Jakub Kuderski <kubakuderski@gmail.com>
2024-11-04 14:59:13 -06:00
Kasper Nielsen
fb7bf7a5ac [MLIR,Python] Support converting boolean numpy arrays to and from mlir attributes (#113064)
Currently it is unsupported to:
1. Convert a `MlirAttribute` with type `i1` to a numpy array
2. Convert a boolean numpy array to a `MlirAttribute`

Currently the entire Python application violently crashes with a quite
poor error message https://github.com/pybind/pybind11/issues/3336

The complication handling these conversions, is that `MlirAttribute`
represent booleans as a bit-packed `i1` type, whereas numpy represents
booleans as a byte array with 8 bit used per boolean.

This PR proposes the following approach:
1. When converting a `i1` typed `MlirAttribute` to a numpy array, we can
not directly use the underlying raw data backing the `MlirAttribute` as
a buffer to Python, as done for other types. Instead, a copy of the data
is generated using numpy's unpackbits function, and the result is send
back to Python.
2. When constructing a `MlirAttribute` from a numpy array, first the
python data is read as a `uint8_t` to get it converted to the endianess
used internally in mlir. Then the booleans are bitpacked using numpy's
bitpack function, and the bitpacked array is saved as the
`MlirAttribute` representation.

Please note that I am not sure if this approach is the desired solution.
I'd appreciate any feedback.
2024-11-02 06:39:48 +00:00
Andrzej Warzyński
a758bcdbd9 [mlir][td] Rename pack_paddings in structured.pad (#111036)
The pack_paddings attribute in the structure.pad TD Op is used to set
the `nofold` attribute in the generated tensor.pad Op. The current name
is confusing and suggests that there's a relation with the tensor.pack
Op. This patch renames it as `nofold_flags` to better match the actual
usage.
2024-10-15 19:24:43 +01:00
Emilio Cota
1276ce9e97 Revert "[mlir][linalg] Introduce transpose semantic to 'linalg.matmul' ops. (#104783)"
This reverts commit 03483737a7 and
99c8557, which is a fix-up on top of the former.

I'm reverting because this commit broke two tests:
  mlir/test/python/integration/dialects/linalg/opsrun.py
  mlir/test/python/integration/dialects/transform.py
See https://lab.llvm.org/buildbot/#/builders/138/builds/4872

I'm not familiar with the tests, so I'm leaving it to the original author
to either remove or adapt the broken tests, as discussed here:
  https://github.com/llvm/llvm-project/pull/104783#issuecomment-2406390905
2024-10-11 05:22:56 -04:00
Md Asghar Ahmad Shahid
03483737a7 [mlir][linalg] Introduce transpose semantic to 'linalg.matmul' ops. (#104783)
The main goal of this patch is to extend the semantic of 'linalg.matmul'
named op to include per operand transpose semantic while also laying out
a way to move ops definition from OpDSL to tablegen. Hence, it is
implemented in tablegen. Transpose semantic is as follows.

By default 'linalg.matmul' behavior will remain as is. Transpose
semantics can be appiled on per input operand by specifying the optional
permutation attributes (namely 'permutationA' for 1st input and
'permutationB' for 2nd input) for each operand explicitly as needed. By
default, no transpose is mandated for any of the input operand.

    Example:
    ```
%val = linalg.matmul ins(%arg0, %arg1 : memref<5x3xf32>,
memref<5x7xf32>)
              outs(%arg2: memref<3x7xf32>)
              permutationA = [1, 0]
              permutationB = [0, 1]
    ```
2024-10-10 17:00:58 +01:00
Sergey Kozub
3f9cabae00 [MLIR] Add f8E8M0FNU type (#111028)
This PR adds `f8E8M0FNU` type to MLIR.

`f8E8M0FNU` type is proposed in [OpenCompute MX
Specification](https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf).
It defines a 8-bit floating point number with bit layout S0E8M0. Unlike
IEEE-754 types, there are no infinity, denormals, zeros or negative
values.

```c
f8E8M0FNU
- Exponent bias: 127
- Maximum stored exponent value: 254 (binary 1111'1110)
- Maximum unbiased exponent value: 254 - 127 = 127
- Minimum stored exponent value: 0 (binary 0000'0000)
- Minimum unbiased exponent value: 0 − 127 = -127
- Doesn't have zero
- Doesn't have infinity
- NaN is encoded as binary 1111'1111

Additional details:
- Zeros cannot be represented
- Negative values cannot be represented
- Mantissa is always 1
```

Related PRs:
- [PR-107127](https://github.com/llvm/llvm-project/pull/107127)
[APFloat] Add APFloat support for E8M0 type
- [PR-105573](https://github.com/llvm/llvm-project/pull/105573) [MLIR]
Add f6E3M2FN type - was used as a template for this PR
- [PR-107999](https://github.com/llvm/llvm-project/pull/107999) [MLIR]
Add f6E2M3FN type
- [PR-108877](https://github.com/llvm/llvm-project/pull/108877) [MLIR]
Add f4E2M1FN type
2024-10-04 09:23:12 +02:00
Mateusz Sokół
a9746675a5 [MLIR][Python] Add encoding argument to tensor.empty Python function (#110656)
Hi @xurui1995 @makslevental,

I think in https://github.com/llvm/llvm-project/pull/103087 there's
unintended regression where user can no longer create sparse tensors
with `tensor.empty`.

Previously I could pass:
```python
out = tensor.empty(tensor_type, [])
```
where `tensor_type` contained `shape`, `dtype`, and `encoding`.

With the latest 
```python
tensor.empty(sizes: Sequence[Union[int, Value]], element_type: Type, *, loc=None, ip=None)
```
it's no longer possible.

I propose to add `encoding` argument which is passed to
`RankedTensorType.get(static_sizes, element_type, encoding)` (I updated
one of the tests to check it).
2024-10-01 16:48:00 -04:00
Sergey Kozub
2c58063435 [MLIR] Add f4E2M1FN type (#108877)
This PR adds `f4E2M1FN` type to mlir.

`f4E2M1FN` type is proposed in [OpenCompute MX
Specification](https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf).
It defines a 4-bit floating point number with bit layout S1E2M1. Unlike
IEEE-754 types, there are no infinity or NaN values.

```c
f4E2M1FN
- Exponent bias: 1
- Maximum stored exponent value: 3 (binary 11)
- Maximum unbiased exponent value: 3 - 1 = 2
- Minimum stored exponent value: 1 (binary 01)
- Minimum unbiased exponent value: 1 − 1 = 0
- Has Positive and Negative zero
- Doesn't have infinity
- Doesn't have NaNs

Additional details:
- Zeros (+/-): S.00.0
- Max normal number: S.11.1 = ±2^(2) x (1 + 0.5) = ±6.0
- Min normal number: S.01.0 = ±2^(0) = ±1.0
- Min subnormal number: S.00.1 = ±2^(0) x 0.5 = ±0.5
```

Related PRs:
- [PR-95392](https://github.com/llvm/llvm-project/pull/95392) [APFloat]
Add APFloat support for FP4 data type
- [PR-105573](https://github.com/llvm/llvm-project/pull/105573) [MLIR]
Add f6E3M2FN type - was used as a template for this PR
- [PR-107999](https://github.com/llvm/llvm-project/pull/107999) [MLIR]
Add f6E2M3FN type
2024-09-24 08:22:48 +02:00
Tulio Magno Quites Machado Filho
4eee0cfc8a [MLIR] Reuse the path to runner_utils libraries (#108579)
Prefer to get the path to libmlir_runner_utils and
libmlir_c_runner_utils via %mlir_runner_utils and %mlir_c_runner_utils.
Fallback to the previous paths only if they aren't defined.

This ensures the test will pass regardless of the build configuration
used downstream.
2024-09-18 09:48:40 -03:00
Bimo
f8eceb45d0 [MLIR] [Python] align python ir printing with mlir-print-ir-after-all (#107522)
When using the `enable_ir_printing` API from Python, it invokes IR
printing with default args, printing the IR before each pass and
printing IR after pass only if there have been changes. This PR attempts
to align the `enable_ir_printing` API with the documentation
2024-09-18 11:54:16 +08:00
Sergey Kozub
73d83f20c9 [MLIR] Add f6E2M3FN type (#107999)
This PR adds `f6E2M3FN` type to mlir.

`f6E2M3FN` type is proposed in [OpenCompute MX
Specification](https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf).
It defines a 6-bit floating point number with bit layout S1E2M3. Unlike
IEEE-754 types, there are no infinity or NaN values.

```c
f6E2M3FN
- Exponent bias: 1
- Maximum stored exponent value: 3 (binary 11)
- Maximum unbiased exponent value: 3 - 1 = 2
- Minimum stored exponent value: 1 (binary 01)
- Minimum unbiased exponent value: 1 − 1 = 0
- Has Positive and Negative zero
- Doesn't have infinity
- Doesn't have NaNs

Additional details:
- Zeros (+/-): S.00.000
- Max normal number: S.11.111 = ±2^(2) x (1 + 0.875) = ±7.5
- Min normal number: S.01.000 = ±2^(0) = ±1.0
- Max subnormal number: S.00.111 = ±2^(0) x 0.875 = ±0.875
- Min subnormal number: S.00.001 = ±2^(0) x 0.125 = ±0.125
```

Related PRs:
- [PR-94735](https://github.com/llvm/llvm-project/pull/94735) [APFloat]
Add APFloat support for FP6 data types
- [PR-105573](https://github.com/llvm/llvm-project/pull/105573) [MLIR]
Add f6E3M2FN type - was used as a template for this PR
2024-09-16 21:09:27 +02:00
Amy Wang
334873fe2d [MLIR][Python] Python binding support for IntegerSet attribute (#107640)
Support IntegerSet attribute python binding.
2024-09-11 07:37:35 -04:00
Sergey Kozub
918222ba43 [MLIR] Add f6E3M2FN type (#105573)
This PR adds `f6E3M2FN` type to mlir.

`f6E3M2FN` type is proposed in [OpenCompute MX
Specification](https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf).
It defines a 6-bit floating point number with bit layout S1E3M2. Unlike
IEEE-754 types, there are no infinity or NaN values.

```c
f6E3M2FN
- Exponent bias: 3
- Maximum stored exponent value: 7 (binary 111)
- Maximum unbiased exponent value: 7 - 3 = 4
- Minimum stored exponent value: 1 (binary 001)
- Minimum unbiased exponent value: 1 − 3 = −2
- Has Positive and Negative zero
- Doesn't have infinity
- Doesn't have NaNs

Additional details:
- Zeros (+/-): S.000.00
- Max normal number: S.111.11 = ±2^(4) x (1 + 0.75) = ±28
- Min normal number: S.001.00 = ±2^(-2) = ±0.25
- Max subnormal number: S.000.11 = ±2^(-2) x 0.75 = ±0.1875
- Min subnormal number: S.000.01 = ±2^(-2) x 0.25 = ±0.0625
```

Related PRs:
- [PR-94735](https://github.com/llvm/llvm-project/pull/94735) [APFloat]
Add APFloat support for FP6 data types
- [PR-97118](https://github.com/llvm/llvm-project/pull/97118) [MLIR] Add
f8E4M3 type - was used as a template for this PR
2024-09-10 10:41:05 +02:00
Matt Hofmann
ad89e617c7 [MLIR][Python] Fix detached operation coming from IfOp constructor (#107286)
Without this fix, `scf.if` operations would be created without a parent.
Since `scf.if` operations often have no results, this caused silent bugs
where the generated code was straight-up missing the operation.
2024-09-05 00:12:03 -04:00
Kasper Nielsen
3766ba44a8 [mlir][python] Fix how the mlir variadic Python accessor _ods_equally_sized_accessor is used (#101132) (#106003)
As reported in https://github.com/llvm/llvm-project/issues/101132, this
fixes two bugs:

1. When accessing variadic operands inside an operation, it must be
accessed as `self.operation.operands` instead of `operation.operands`
2. The implementation of the `equally_sized_accessor` function is doing
wrong arithmetics when calculating the resulting index and group sizes.

I have added a test for the `equally_sized_accessor` function, which did
not have a test previously.
2024-08-31 03:17:33 -04:00
Fabian Mora
016e1eb9c8 [mlir][gpu] Add metadata attributes for storing kernel metadata in GPU objects (#95292)
This patch adds the `#gpu.kernel_metadata` and `#gpu.kernel_table`
attributes. The `#gpu.kernel_metadata` attribute allows storing metadata
related to a compiled kernel, for example, the number of scalar
registers used by the kernel. The attribute only has 2 required
parameters, the name and function type. It also has 2 optional
parameters, the arguments attributes and generic dictionary for storing
all other metadata.

The `#gpu.kernel_table` stores a table of `#gpu.kernel_metadata`,
mapping the name of the kernel to the metadata.

Finally, the function `ROCDL::getAMDHSAKernelsELFMetadata` was added to
collect ELF metadata from a binary, and to test the class methods in
both attributes.

Example:
```mlir
gpu.binary @binary [#gpu.object<#rocdl.target<chip = "gfx900">, kernels = #gpu.kernel_table<[
    #gpu.kernel_metadata<"kernel0", (i32) -> (), metadata = {sgpr_count = 255}>,
    #gpu.kernel_metadata<"kernel1", (i32, f32) -> (), arg_attrs = [{llvm.read_only}, {}]>
  ]> , bin = "BLOB">]

```
The motivation behind these attributes is to provide useful information
for things like tunning.

---------

Co-authored-by: Mehdi Amini <joker.eph@gmail.com>
2024-08-27 18:44:50 -04:00
PhrygianGates
c8cac33ad2 [MLIR][Python] add f8E5M2 and tests for np_to_memref (#106028)
add f8E5M2 and tests for np_to_memref

---------

Co-authored-by: Zhicheng Xiong <zhichengx@dc2-sim-c01-215.nvidia.com>
2024-08-26 21:40:38 -05:00
Bimo
4eefc8d4ce [MLIR][Python] enhance python api for tensor.empty (#103087)
Since we have extended `EmptyOp`, maybe we should also provide a
corresponding `tensor.empty` method. In the downstream usage, I tend to
use APIs with all lowercase letters to create ops, so having a
`tensor.empty` to replace the extended `tensor.EmptyOp` would keep my
code style consistent.
2024-08-19 09:06:48 +08:00
Matthias Springer
7d4aa1ff6b [mlir][IR] Auto-generate element type verification for VectorType (#102449)
#102326 enables verification of type parameters that are type
constraints. The element type verification for `VectorType` (and maybe
other builtin types in the future) can now be auto-generated.

Also remove redundant error checking in the vector type parser: element
type and dimensions are already checked by the verifier (which is called
from `getChecked`).

Depends on #102326.
2024-08-12 08:02:14 +02:00
Alexander Pivovarov
eef1d7e377 [MLIR] Add f8E3M4 IEEE 754 type (#101230)
This PR adds `f8E3M4` type to mlir.

`f8E3M4` type  follows IEEE 754 convention

```c
f8E3M4 (IEEE 754)
- Exponent bias: 3
- Maximum stored exponent value: 6 (binary 110)
- Maximum unbiased exponent value: 6 - 3 = 3
- Minimum stored exponent value: 1 (binary 001)
- Minimum unbiased exponent value: 1 − 3 = −2
- Precision specifies the total number of bits used for the significand (mantissa), 
    including implicit leading integer bit = 4 + 1 = 5
- Follows IEEE 754 conventions for representation of special values
- Has Positive and Negative zero
- Has Positive and Negative infinity
- Has NaNs

Additional details:
- Max exp (unbiased): 3
- Min exp (unbiased): -2
- Infinities (+/-): S.111.0000
- Zeros (+/-): S.000.0000
- NaNs: S.111.{0,1}⁴ except S.111.0000
- Max normal number: S.110.1111 = +/-2^(6-3) x (1 + 15/16) = +/-2^3 x 31 x 2^(-4) = +/-15.5
- Min normal number: S.001.0000 = +/-2^(1-3) x (1 + 0) = +/-2^(-2)
- Max subnormal number: S.000.1111 = +/-2^(-2) x 15/16 = +/-2^(-2) x 15 x 2^(-4) = +/-15 x 2^(-6)
- Min subnormal number: S.000.0001 = +/-2^(-2) x 1/16 =  +/-2^(-2) x 2^(-4) = +/-2^(-6)
```

Related PRs:
- [PR-99698](https://github.com/llvm/llvm-project/pull/99698) [APFloat]
Add support for f8E3M4 IEEE 754 type
- [PR-97118](https://github.com/llvm/llvm-project/pull/97118) [MLIR] Add
f8E4M3 IEEE 754 type
2024-08-02 00:22:11 -07:00
Bimo
5ef087b705 Reapply "[MLIR][Python] add ctype python binding support for bf16" (#101271)
Reapply the PR which was reverted due to built-bots, and now the bots
get updated.
https://discourse.llvm.org/t/need-a-help-with-the-built-bots/79437
original PR: https://github.com/llvm/llvm-project/pull/92489, reverted
in https://github.com/llvm/llvm-project/pull/93771
2024-07-31 10:24:27 +02:00
Alexander Pivovarov
019136e30f [MLIR] Add f8E4M3 IEEE 754 type (#97118)
This PR adds `f8E4M3` type to mlir.

`f8E4M3` type  follows IEEE 754 convention

```c
f8E4M3 (IEEE 754)
- Exponent bias: 7
- Maximum stored exponent value: 14 (binary 1110)
- Maximum unbiased exponent value: 14 - 7 = 7
- Minimum stored exponent value: 1 (binary 0001)
- Minimum unbiased exponent value: 1 − 7 = −6
- Precision specifies the total number of bits used for the significand (mantisa), 
    including implicit leading integer bit = 3 + 1 = 4
- Follows IEEE 754 conventions for representation of special values
- Has Positive and Negative zero
- Has Positive and Negative infinity
- Has NaNs

Additional details:
- Max exp (unbiased): 7
- Min exp (unbiased): -6
- Infinities (+/-): S.1111.000
- Zeros (+/-): S.0000.000
- NaNs: S.1111.{001, 010, 011, 100, 101, 110, 111}
- Max normal number: S.1110.111 = +/-2^(7) x (1 + 0.875) = +/-240
- Min normal number: S.0001.000 = +/-2^(-6)
- Max subnormal number: S.0000.111 = +/-2^(-6) x 0.875 = +/-2^(-9) x 7
- Min subnormal number: S.0000.001 = +/-2^(-6) x 0.125 = +/-2^(-9)
```

Related PRs:
- [PR-97179](https://github.com/llvm/llvm-project/pull/97179) [APFloat]
Add support for f8E4M3 IEEE 754 type
2024-07-22 23:20:28 -07:00
Andrzej Warzyński
2ee5586ac7 [mlir][vector] Make the in_bounds attribute mandatory (#97049)
At the moment, the in_bounds attribute has two confusing/contradicting
properties:
  1. It is both optional _and_ has an effective default-value.
  2. The default value is "out-of-bounds" for non-broadcast dims, and
     "in-bounds" for broadcast dims.

(see the `isDimInBounds` vector interface method for an example of this
"default" behaviour [1]).

This PR aims to clarify the logic surrounding the `in_bounds` attribute
by:
  * making the attribute mandatory (i.e. it is always present),
  * always setting the default value to "out of bounds" (that's
    consistent with the current behaviour for the most common cases).

#### Broadcast dimensions in tests

As per [2], the broadcast dimensions requires the corresponding
`in_bounds` attribute to be `true`:
```
  vector.transfer_read op requires broadcast dimensions to be in-bounds
```

The changes in this PR mean that we can no longer rely on the
default value in cases like the following (dim 0 is a broadcast dim):
```mlir
  %read = vector.transfer_read %A[%base1, %base2], %f, %mask
      {permutation_map = affine_map<(d0, d1) -> (0, d1)>} :
    memref<?x?xf32>, vector<4x9xf32>
```

Instead, the broadcast dimension has to explicitly be marked as "in
bounds:

```mlir
  %read = vector.transfer_read %A[%base1, %base2], %f, %mask
      {in_bounds = [true, false], permutation_map = affine_map<(d0, d1) -> (0, d1)>} :
    memref<?x?xf32>, vector<4x9xf32>
```

All tests with broadcast dims are updated accordingly.

#### Changes in "SuperVectorize.cpp" and "Vectorization.cpp"

The following patterns in "Vectorization.cpp" are updated to explicitly
set the `in_bounds` attribute to `false`:
* `LinalgCopyVTRForwardingPattern` and `LinalgCopyVTWForwardingPattern`

Also, `vectorizeAffineLoad` (from "SuperVectorize.cpp") and
`vectorizeAsLinalgGeneric` (from "Vectorization.cpp") are updated to
make sure that xfer Ops created by these hooks set the dimension
corresponding to broadcast dims as "in bounds". Otherwise, the Op
verifier would complain

Note that there is no mechanism to verify whether the corresponding
memory access are indeed in bounds. Still, this is consistent with the
current behaviour where the broadcast dim would be implicitly assumed
to be "in bounds".

[1]
4145ad2bac/mlir/include/mlir/Interfaces/VectorInterfaces.td (L243-L246)
[2]
https://mlir.llvm.org/docs/Dialects/Vector/#vectortransfer_read-vectortransferreadop
2024-07-16 16:49:52 +01:00
Maksim Levental
9315645834 [mlir][python] auto attribute casting (#97786) 2024-07-05 10:43:51 -05:00
Bimo
bfa762a5a5 [MLIR][Python] fix class name of powf and negf in linalg (#97696)
The following logic can lead to a class name mismatch when using
`linalg.powf` in Python. This PR fixed the issue and also renamed
`NegfOp` to `NegFOp` in linalg to adhere to the naming convention, as
exemplified by `arith::NegFOp`.


173514d58e/mlir/python/mlir/dialects/linalg/opdsl/lang/dsl.py (L140-L143)
```
# linalg.powf(arg0, arg1, outs=[init_result.result])
NotImplementedError: Unknown named op_name / op_class_name: powf / PowfOp
```
2024-07-05 09:23:12 +08:00
Ramkumar Ramachandra
db791b278a mlir/LogicalResult: move into llvm (#97309)
This patch is part of a project to move the Presburger library into
LLVM.
2024-07-02 10:42:33 +01:00
Bimo
c36b424828 [MLIR][Python] add value attr for PyAffineMapAttribute (#97254)
Similar to other attributes in Binding, the `PyAffineMapAttribute`
should include a value attribute to enable users to directly retrieve
the `AffineMap` from the `AffineMapAttr`.
2024-07-01 23:44:40 +08:00
muneebkhan85
a9efcbf490 [MLIR] Add continuous tiling to transform dialect (#82792)
This patch enables continuous tiling of a target structured op using
diminishing tile sizes. In cases where the tensor dimensions are not
exactly divisible by the tile size, we are left with leftover tensor
chunks that are irregularly tiled. This approach enables tiling of the
leftover chunk with a smaller tile size and repeats this process
recursively using exponentially diminishing tile sizes. This eventually
generates a chain of loops that apply tiling using diminishing tile
sizes.

Adds `continuous_tile_sizes` op to the transform dialect. This op, when
given a tile size and a dimension, computes a series of diminishing tile
sizes that can be used to tile the target along the given dimension.
Additionally, this op also generates a series of chunk sizes that the
corresponding tile sizes should be applied to along the given dimension.

Adds `multiway` attribute to `transform.structured.split` that enables
multiway splitting of a single target op along the given dimension, as
specified in a list enumerating the chunk sizes.
2024-06-21 16:39:43 +02:00
Jonas Rickert
abad8455ab [mlir] Expose skipRegions option for Op printing in the C and Python bindings (#96150)
The MLIR C and Python Bindings expose various methods from
`mlir::OpPrintingFlags` . This PR adds a binding for the `skipRegions`
method, which allows to skip the printing of Regions when printing Ops.
It also exposes this option as parameter in the python `get_asm` and
`print` methods
2024-06-20 10:15:08 -05:00
klensy
a5985ca51d [mlir][test] Fix filecheck annotation typos [2/n] (#93476)
Few more fixes
previous: https://github.com/llvm/llvm-project/pull/92897 pr
Issues from https://github.com/llvm/llvm-project/issues/93154 unfixed.

---------

Co-authored-by: klensy <nightouser@gmail.com>
2024-06-14 17:16:02 +02:00
Jacques Pienaar
18cf1cd92b [mlir] Add PDL C & Python usage (#94714)
Following a rather direct approach to expose PDL usage from C and then
Python. This doesn't yes plumb through adding support for custom
matchers through this interface, so constrained to basics initially.

This also exposes greedy rewrite driver. Only way currently to define
patterns is via PDL (just to keep small). The creation of the PDL
pattern module could be improved to avoid folks potentially accessing
the module used to construct it post construction. No ergonomic work
done yet.

---------

Signed-off-by: Jacques Pienaar <jpienaar@google.com>
2024-06-11 07:45:12 -07:00
Eisuke Kawashima
fd45dcca26 fix(mlir/**.py): fix comparison to None (#94019)
from PEP8
(https://peps.python.org/pep-0008/#programming-recommendations):

> Comparisons to singletons like None should always be done with is or
is not, never the equality operators.

Co-authored-by: Eisuke Kawashima <e-kwsm@users.noreply.github.com>
2024-06-07 12:03:07 +02:00
Sandeep Dasgupta
55d2fffdae [mlir][python]Python Bindings for select edit operations on Block arguments (#94305)
The PR implements MLIR Python Bindings for a few simple edit operations
on Block arguments, namely, `add_argument`, `erase_argument`, and
`erase_arguments`.
2024-06-05 17:10:55 -05:00
Oleksandr "Alex" Zinenko
67897d77ed [mlir][py] invalidate nested operations when parent is deleted (#93339)
When an operation is erased in Python, its children may still be in the
"live" list inside Python bindings. After this, if some of the newly
allocated operations happen to reuse the same pointer address, this will
trigger an assertion in the bindings. This assertion would be incorrect
because the operations aren't actually live. Make sure we remove the
children operations from the "live" list when erasing the parent.

This also concentrates responsibility over the removal from the "live"
list and invalidation in a single place.

Note that this requires the IR to be sufficiently structurally valid so
a walk through it can succeed. If this invariant was broken by, e.g, C++
pass called from Python, there isn't much we can do.
2024-05-30 10:06:02 +02:00
Mehdi Amini
e6821dd8c8 Revert "[MLIR][Python] add ctype python binding support for bf16" (#93771)
Reverts llvm/llvm-project#92489

This broke the bots.
2024-05-29 23:21:04 -06:00
Bimo
89801c74c3 [MLIR][Python] add ctype python binding support for bf16 (#92489)
Since bf16 is supported by mlir, similar to
complex128/complex64/float16, we need an implementation of bf16 ctype in
Python binding. Furthermore, to resolve the absence of bf16 support in
NumPy, a third-party package [ml_dtypes
](https://github.com/jax-ml/ml_dtypes) is introduced to add bf16
extension, and the same approach was used in `torch-mlir` project.

See motivation and discussion in:
https://discourse.llvm.org/t/how-to-run-executionengine-with-bf16-dtype-in-mlir-python-bindings/79025
2024-05-29 22:01:40 -07:00
Guray Ozen
7f58ffd09b [mlir][python] Yield results of scf.for_ (#93610)
Using `for_` is very hand with python bindings. Currently, it doesn't
support results, we had to fallback to two lines scf.for.

This PR yields results of scf.for in `for_`

---------

Co-authored-by: Maksim Levental <maksim.levental@gmail.com>
2024-05-29 08:43:13 +02:00
klensy
f0b0c02504 [mlir][test] Fix filecheck annotation typos (#92897)
Moved fixes for mlir from
https://github.com/llvm/llvm-project/pull/91854, plus few additional in
second commit.

---------

Co-authored-by: klensy <nightouser@gmail.com>
2024-05-24 09:24:59 +02:00
pranavm-nvidia
c912f0e773 [mlir][python] Add bindings for mlirDenseElementsAttrGet (#91389)
This change adds bindings for `mlirDenseElementsAttrGet` which accepts a
list of MLIR attributes and constructs a DenseElementsAttr. This allows
for creating `DenseElementsAttr`s of types not natively supported by
Python (e.g. BF16) without requiring other dependencies (e.g. `numpy` +
`ml-dtypes`).
2024-05-22 05:44:22 -05:00
srcarroll
2c1c67674c [mlir][transform] Consistent linalg transform op syntax for dynamic index lists (#90897)
This patch is a first pass at making consistent syntax across the
`LinalgTransformOp`s that use dynamic index lists for size parameters.
Previously, there were two different forms: inline types in the list, or
place them in the functional style tuple. This patch goes for the
latter.

In order to do this, the `printPackedOrDynamicIndexList`,
`printDynamicIndexList` and their `parse` counterparts were modified so
that the types can be optionally provided to the corresponding custom
directives.

All affected ops now use tablegen `assemblyFormat`, so custom
`parse`/`print` functions have been removed. There are a couple ops that
will likely add dynamic size support, and once that happens it should be
made sure that the assembly remains consistent with the changes in this
patch.

The affected ops are as follows: `pack`, `pack_greedily`,
`tile_using_forall`. The `tile_using_for` and `vectorize` ops already
used this syntax, but their custom assembly was removed.

---------

Co-authored-by: Oleksandr "Alex" Zinenko <ftynse@gmail.com>
2024-05-08 09:11:53 -05:00