Fixes#6515707c215e8a8 added some extra logging
which compiles ok with clang but not msvc. Use LLVM_PRETTY_FUNCTION
to fix that.
Fix suggested by Carlos Alberto Enciso.
ConstString can be implicitly converted into a llvm::StringRef. This is
very useful in many places, but it also hides places where we are
creating a ConstString only to use it as a StringRef for the entire
lifespan of the ConstString object.
I locally removed the implicit conversion and found some of the places we
were doing this.
Differential Revision: https://reviews.llvm.org/D159237
We ran into a case where shared libraries would fail to load in some processes on linux. The issue turned out to be if the main executable or a shared library defined a symbol named "_r_debug", then it would cause problems once the executable that contained it was loaded into the process. The "_r_debug" structure is currently found by looking through the .dynamic section in the main executable and finding the DT_DEBUG entry which points to this structure. The dynamic loader will update this structure as shared libraries are loaded and LLDB watches the contents of this structure as the dyld breakpoint is hit. Currently we expect the "state" in this structure to change as things happen. An issue comes up if someone defines another "_r_debug" struct in their program:
```
r_debug _r_debug;
```
If this code is included, a new "_r_debug" structure is created and it causes problems once the executable is loaded. This is because of the way symbol lookups happen in linux: they use the shared library list in the order it created and the dynamic loader is always last. So at some point the dynamic loader will start updating this other copy of "_r_debug", yet LLDB is only watching the copy inside of the dynamic loader.
Steps that show the problem are:
- lldb finds the "_r_debug" structure via the DT_DEBUG entry in the .dynamic section and this points to the "_r_debug" in ld.so
- ld.so modifies its copy of "_r_debug" with "state = eAdd" before it loads the shared libraries and calls the dyld function that LLDB has set a breakpoint on and we find this state and do nothing (we are waiting for a state of eConsistent to tell us the shared libraries have been fully loaded)
- ld.so loads the main executable and any dependent shared libraries and wants to update the "_r_debug" structure, but it now finds "_r_debug" in the a.out program and updates the state in this other copy
- lldb hits the notification breakpoint and checks the ld.so copy of "_r_debug" which still has a state of "eAdd". LLDB wants the new "eConsistent" state which will trigger the shared libraries to load, but it gets stale data and doesn't do anyhing and library load is missed. The "_r_debug" in a.out has the state set correctly, but we don't know which "_r_debug" is the right one.
The new fix detects the two "eAdd" states and loads shared libraries and will emit a log message in the "log enable lldb dyld" log channel which states there might be multiple "_r_debug" structs.
The correct solution is that no one should be adding a duplicate "_r_debug" symbol to their binaries, but we have programs that are doing this already and since it can be done, we should be able to work with this and keep debug sessions working as expected. If a user #includes the <link.h> file, they can just use the existing "_r_debug" structure as it is defined in this header file as "extern struct r_debug _r_debug;" and no local copies need to be made.
If your ld.so has debug info, you can easily see the duplicate "_r_debug" structs by doing:
```
(lldb) target variable _r_debug --raw
(r_debug) _r_debug = {
r_version = 1
r_map = 0x00007ffff7e30210
r_brk = 140737349972416
r_state = RT_CONSISTENT
r_ldbase = 0
}
(r_debug) _r_debug = {
r_version = 1
r_map = 0x00007ffff7e30210
r_brk = 140737349972416
r_state = RT_ADD
r_ldbase = 140737349943296
}
(lldb) target variable &_r_debug
(r_debug *) &_r_debug = 0x0000555555601040
(r_debug *) &_r_debug = 0x00007ffff7e301e0
```
And if you do a "image lookup --address <addr>" in the addresses, you can see one is in the a.out and one in the ld.so.
Adding more logging to print out the m_previous and m_current Rendezvous structures to make things more clear. Also added a log when we detect multiple eAdd states in a row to detect this problem in logs.
Differential Revision: https://reviews.llvm.org/D158583
StreamFile subclasses Stream (from lldbUtility) and is backed by a File
(from lldbHost). It does not depend on anything from lldbCore or any of its
sibling libraries, so I think it makes sense for this to live in
lldbHost instead.
Differential Revision: https://reviews.llvm.org/D157460
When lldb starts a kernel debug session, it has the UUID of the
kernel binary. lldb will try three different methods to find a
binary and symbol file for this UUID. Currently it calls out to
Symbols::DownloadObjectAndSymbolFile() first, which may be the
slowest method when a DBGShellCommand can find the UUID on a
network filesystem or downloaded from a server.
This patch tries the local searches first, then falls back to that
method.
Differential Revision: https://reviews.llvm.org/D157165
The DebugSymbols DBGShellsCommand, which can find the symbols
for binaries, has a mechanism to return error messages when
it cannot find a symbol file. Those errors were not printed
to the user for several corefile use case scenarios; this
patch fixes that.
Also add dyld/process logging for the LC_NOTE metadata parsers
in ObjectFileMachO, to help in seeing what lldb is basing its
searches on.
Differential Revision: https://reviews.llvm.org/D157160
This commit does a few related things:
- Removes unused function `uuid_is_null`
- Removes unneeded includes of UuidCompatibility.h
- Renames UuidCompatibility to AppleUuidCompatibility and adds a comment
to clarify intent of header.
- Moves AppleUuidCompatibility to the include directory
Differential Revision: https://reviews.llvm.org/D156562
This was probably the only really useful radar in our source code. It's
a request to be able to tell if __LINKEDIT has been mapped or not. I've
left a comment in the radar that we should update the corresponding code
if and when such an ability becomes available.
dyld has two notification functions - a native one, and one that
it rewrites its arguments for, for lldb. We currently use the
latter, _dyld_debugger_notification. The native notification
function, lldb_image_notifier (and on older systems, gdb_image_notifier)
we can find by name, or if libdyld shows no dyld loaded in the
process currently, we can get it from the dyld_all_image_infos
object in memory which we can find with a system call. When we do
a "waitfor attach" to a process on a modern darwin system, there
is a transition early in launch from the launch dyld to the
shared-cache-dyld, and when we attach in the middle of that transition,
libdyld will say there is no dyld present. But we can still find
the in-memory dyld_all_image_infos which has the address of the
shared cache notifier function that will be registered in the
process soon.
This change will result in a much more reliable waitfor-attach.
This is the third landing of this patch. We have an Intel mac
CI bot that is running an older (c. 2019) macOS 10.15, I had to
reproduce that environment and found the name of the notifier
function had changed which was the cause of those failures.
Differential Revision: https://reviews.llvm.org/D139453
rdar://101194149
On Darwin systems, the dynamic linker dyld has an empty function
it calls when binaries are added/removed from the process. lldb puts
a breakpoint on this dyld function to catch the notifications. The
function arguments are used by lldb to tell what is happening.
The linker has a natural representation when the addresses of
binaries being added/removed are in the pointer size of the process.
There is then a second function where the addresses of the binaries
are in a uint64_t array, which the debugger has been using before -
dyld allocates memory for the array, copies the values in to it,
and calls it for lldb's benefit.
This changes to using the native notifier function, with pointer-sized
addresses.
This is the second time landing this change; this time correct the
size of the image_count argument, and add a fallback if the
notification function "lldb_image_notifier" can't be found.
Differential Revision: https://reviews.llvm.org/D139453
We're seeing a lot of test failures on the lldb incremental x86 CI bot
since I landed https://reviews.llvm.org/D139453 - revert it while I
investigate.
This reverts commit 624813a4f4.
On Darwin systems, the dynamic linker dyld has an empty function
it calls when binaries are added/removed from the process. lldb puts
a breakpoint on this dyld function to catch the notifications. The
function arguments are used by lldb to tell what is happening.
The linker has a natural representation when the addresses of
binaries being added/removed are in the pointer size of the process.
There is then a second function where the addresses of the binaries
are in a uint64_t array, which the debugger has been using before -
dyld allocates memory for the array, copies the values in to it,
and calls it for lldb's benefit.
This changes to using the native notifier function, with pointer-sized
addresses.
Differential Revision: https://reviews.llvm.org/D139453
On AArch64, it is possible to have a program that accesses both low
(0x000...) and high (0xfff...) memory, and with pointer authentication,
you can have different numbers of bits used for pointer authentication
depending on whether the address is in high or low memory.
This adds a new target.process.highmem-virtual-addressable-bits
setting which the AArch64 Mac ABI plugin will use, when set, to
always set those unaddressable high bits for high memory addresses,
and will use the existing target.process.virtual-addressable-bits
setting for low memory addresses.
This patch does not change the existing behavior when only
target.process.virtual-addressable-bits is set. In that case, the
value will apply to all addresses.
Not yet done is recognizing metadata in a live process connection
(gdb-remote qHostInfo) or a Mach-O corefile LC_NOTE to set the
correct number of addressing bits for both memory ranges. That
will be a future change.
Differential Revision: https://reviews.llvm.org/D151292
rdar://109746900
In ProcessMachCore::LoadBinariesViaMetadata(), if we did
load some binaries via metadata in the core file, don't
then search for a userland dyld in the corefile / kernel
and throw away that binary list. Also fix a little bug
with correctly recognizing corefiles using a `main bin spec`
LC_NOTE that explicitly declare that this is a userland
corefile.
LocateSymbolFileMacOSX.cpp's Symbols::DownloadObjectAndSymbolFile
clarify the comments on how the force_lookup and how the
dbgshell_command local both have the same effect.
In PlatformDarwinKernel::LoadPlatformBinaryAndSetup, don't
log a message unless we actually found a kernel fileset.
Reorganize ObjectFileMachO::LoadCoreFileImages so that it delegates
binary searching to DynamicLoader::LoadBinaryWithUUIDAndAddress and
doesn't duplicate those searches. For searches that fail, we would
perform them multiple times in both methods. When we have the
mach-o segment vmaddrs for a binary, don't let LoadBinaryWithUUIDAndAddress
load the binary first at its mach-o header address in the Target;
we'll load the segments at the correct addresses individually later
in this method.
DynamicLoaderDarwin::ImageInfo::PutToLog fix a LLDB_LOG logging
formatter.
In DynamicLoader::LoadBinaryWithUUIDAndAddress, instead of using
Target::GetOrCreateModule as a way to find a binary already registered
in lldb's global module cache (and implicitly add it to the Target
image list), use ModuleList::GetSharedModule() which only searches
the global module cache, don't add it to the Target. We may not
want to add an unstripped binary to the Target.
Add a call to Symbols::DownloadObjectAndSymbolFile() even if
"force_symbol_search" isn't set -- this will turn into a
DebugSymbols call / Spotlight search on a macOS system, which
we want.
Only set the Module's LoadAddress if the caller asked us to do that.
Differential Revision: https://reviews.llvm.org/D150928
rdar://109186357
This patch refactors the `StructuredData::Integer` class to make it
templated, makes it private and adds 2 public specialization for both
`int64_t` & `uint64_t` with a public type aliases, respectively
`SignedInteger` & `UnsignedInteger`.
It adds new getter for signed and unsigned interger values to the
`StructuredData::Object` base class and changes the implementation of
`StructuredData::Array::GetItemAtIndexAsInteger` and
`StructuredData::Dictionary::GetValueForKeyAsInteger` to support signed
and unsigned integers.
This patch also adds 2 new `Get{Signed,Unsigned}IntegerValue` to the
`SBStructuredData` class and marks `GetIntegerValue` as deprecated.
Finally, this patch audits all the caller of `StructuredData::Integer`
or `StructuredData::GetIntegerValue` to use the proper type as well the
various tests that uses `SBStructuredData.GetIntegerValue`.
rdar://105575764
Differential Revision: https://reviews.llvm.org/D150485
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
jGetLoadedDynamicLibrariesInfos has a mode where it will list
every binary in the process - the load address and filepath from dyld
SPI, and the mach-o header and load commands from a scan by debugserver
for perf reasons. With a large enough number of libraries, creating
that StructuredData representation of all of this, and formatting it
into an ascii string to send up to lldb, can grow debugserver's heap
size too large for some environments.
This patch adds a new report_load_commands:false boolean to the
jGetLoadedDynamicLibrariesInfos packet, where debugserver will now
only report the dyld SPI load address and filepath for all of the
binaries. lldb can then ask for the detailed information on
the process binaries in smaller chunks, and avoid debugserver
having ever growing heap use as the number of binaries inevitably
increases.
This patch also removes a version of jGetLoadedDynamicLibrariesInfos
for pre-iOS 10 and pre-macOS 10.12 systems where we did not use
dyld SPI. We can't back compile to those OS builds any longer
with modern Xcode.
Finally, it removes a requirement in DynamicLoaderMacOS that the
JSON reply from jGetLoadedDynamicLibrariesInfos include the
mod_date field for each binary. This has always been reported as
0 in modern dyld, and is another reason for packet growth in
the reply. debugserver still puts the mod_date field in its replies
for interop with existing lldb's, but we will be able to remove it
the field from debugserver's output after the next release cycle
when this patch has had time to circulate.
I'll add lldb support for requesting the load addresses only
and splitting the request up into chunks in a separate patch.
Differential Revision: https://reviews.llvm.org/D150158
rdar://107848326
Re-lands 04aa943be8 with modifications
to fix tests.
I originally reverted this because it caused a test to fail on Linux.
The problem was that I inverted a condition on accident.
Use templates to simplify {Get,Set}PropertyAtIndex. It has always
bothered me how cumbersome those calls are when adding new properties.
After this patch, SetPropertyAtIndex infers the type from its arguments
and GetPropertyAtIndex required a single template argument for the
return value. As an added benefit, this enables us to remove a bunch of
wrappers from UserSettingsController and OptionValueProperties.
Differential revision: https://reviews.llvm.org/D149774
There are many situations where we'll iterate over a SymbolContextList
with the pattern:
```
SymbolContextList sc_list;
// Fill in sc_list here
for (auto i = 0; i < sc_list.GetSize(); i++) {
SymbolContext sc;
sc_list.GetSymbolAtContext(i, sc);
// Do work with sc
}
```
Adding an iterator to iterate over the instances directly means we don't
have to do bounds checking or create a copy of every element of the
SymbolContextList.
Differential Revision: https://reviews.llvm.org/D149900
The majority of call sites are nullptr as the execution context.
Refactor OptionValueProperties to make the argument optional and
simplify all the callers.
Similar to fdbe7c7faa, refactor OptionValueProperties to return a
std::optional instead of taking a fail value. This allows the caller to
handle situations where there's no value, instead of being unable to
distinguish between the absence of a value and the value happening the
match the fail value. When a fail value is required,
std::optional::value_or() provides the same functionality.
These probably do not need to be in the ConstString StringPool as they
don't really need any of the advantages that ConstStrings offer.
Lifetime for these things is always static and we never need to perform
comparisons for setting descriptions.
Differential Revision: https://reviews.llvm.org/D148679
The kernel has a global variable with the TCR_EL1.T1SZ value,
from which was can calculate the number of addressable bits.
Find that symbol in DynamicLoaderDarwinKernel and set the bits
to that value for this Process.
Differential Revision: https://reviews.llvm.org/D147462
rdar://107445318
Follow Alex Langford's feedback to my patch from
https://reviews.llvm.org/D145547 , and fix a
side issue I noticed while testing this, where
binaries loaded via LC_NOTE metadata were loaded
in the Target twice unnecessarily.
We have some non-kexts in the binary list in the Darwin kernel
in some situations. The binary has likely already been loaded;
check if it has been, and don't re-load it. Also, if we do need
to load it at this point, if in-memory segment vmaddrs have not
been updated to the actual load addresses, calculate a fixed slide
for the in-memory image and apply that slide to the ondisk binary.
Differential Revision: https://reviews.llvm.org/D145547
rdar://106343477
This patch is preparatory work for Scripted Platform support and does
multiple things:
First, it introduces new options for the `platform select` command and
`SBPlatform::Create` API, to hold a reference to the debugger object,
the name of the python script managing the Scripted Platform and a
structured data dictionary that the user can use to pass arbitrary data.
Then, it updates the various `Create` and `GetOrCreate` methods for
the `Platform` and `PlatformList` classes to pass down the new parameter
to the `Platform::CreateInstance` callbacks.
Finally, it updates every callback to reflect these changes.
Differential Revision: https://reviews.llvm.org/D139249
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
The current interface theoretically could lead to a use-after-free
when a client holds on to the returned pointer. Fix this by returning
a shared_ptr to the scratch typesystem.
rdar://103619233
Differential Revision: https://reviews.llvm.org/D141100
When lldb is reading a user process corefile, it starts by finding
dyld, then finding the dyld_all_image_infos structure in dyld by
symbol name, then getting the list of loaded binaries. If it fails
to find the structure by name, it can't load binaries. There is
an additional fallback that this patch adds, which is to look for
this object by the section name it is stored in, if the symbol name
lookup fails.
Differential Revision: https://reviews.llvm.org/D140066
rdar://103369931
This is a fairly large changeset, but it can be broken into a few
pieces:
- `llvm/Support/*TargetParser*` are all moved from the LLVM Support
component into a new LLVM Component called "TargetParser". This
potentially enables using tablegen to maintain this information, as
is shown in https://reviews.llvm.org/D137517. This cannot currently
be done, as llvm-tblgen relies on LLVM's Support component.
- This also moves two files from Support which use and depend on
information in the TargetParser:
- `llvm/Support/Host.{h,cpp}` which contains functions for inspecting
the current Host machine for info about it, primarily to support
getting the host triple, but also for `-mcpu=native` support in e.g.
Clang. This is fairly tightly intertwined with the information in
`X86TargetParser.h`, so keeping them in the same component makes
sense.
- `llvm/ADT/Triple.h` and `llvm/Support/Triple.cpp`, which contains
the target triple parser and representation. This is very intertwined
with the Arm target parser, because the arm architecture version
appears in canonical triples on arm platforms.
- I moved the relevant unittests to their own directory.
And so, we end up with a single component that has all the information
about the following, which to me seems like a unified component:
- Triples that LLVM Knows about
- Architecture names and CPUs that LLVM knows about
- CPU detection logic for LLVM
Given this, I have also moved `RISCVISAInfo.h` into this component, as
it seems to me to be part of that same set of functionality.
If you get link errors in your components after this patch, you likely
need to add TargetParser into LLVM_LINK_COMPONENTS in CMake.
Differential Revision: https://reviews.llvm.org/D137838
The dynamic linker on Darwin, dyld, can provide status of
the process state for a few significant points early on,
most importantly, when libSystem has been initialized and it
is safe to call functions behind the scenes. Pipe this
information up from debugserver to DynamicLoaderMacOS, for
the DynamicLoader::IsFullyInitialized() method, then have
Thread::SafeToCallFunctions use this information. Finally,
for the two utility functions in the AppleObjCRuntimeV2
LanguageRuntime plugin that I was fixing, call this method
before running our utility functions to collect the list of
objc classes registered in the runtime.
User expressions will still be allowed to run any time -
we assume the user knows what they are doing - but these
two additional utility functions that they are unaware of
will be limited by this state.
Differential Revision: https://reviews.llvm.org/D139054
rdar://102436092
can probably make function calls.
DynamicLoaderDarwinKernel::SearchForKernelNearPC() searches for a
Darwin kernel mach-o header starting at $pc and working backwards,
stopping on the first memory read error encountered. The kernel,
and the kexts linked in to the kernel, have grown over the years
and the original 32MB scan limit is giving a high chance of failing
to find the kernel if we're in a random kext.
In non-kernel environments, firmware and bare board typically, we
will hit a memory read error on an unmapped page quickly so this
doesn't add a lot of random memory read requests in those environments.
We only check at one megabyte boundaries, so worst case this is 128
reads at the start of a gdb-remote connection. The check for a
memory read error & stopping was a more recent addition (a few years
ago), so I kept the scan region a bit small.
Prior to this fix, no shared libraries would be loaded for a core file, even if they exist on the current machine. The issue was the DYLDRendezvous would read a DYLDRendezvous::Rendezvous from memory of the process in DYLDRendezvous::Resolve() which would read some ld.so structures as they existed in the middle of a process' lifetime. In core files we see, the DYLDRendezvous::Rendezvous::state would be set to eAdd for running processes. When ProcessELFCore.cpp would load the core file, it would call DynamicLoaderPOSIXDYLD::DidAttach(), which would call the above Rendezvous functions. The issue came when during the DidAttach function it call DYLDRendezvous::GetAction() which would return eNoAction if the DYLDRendezvous::m_current.state was read from memory as eAdd. This caused no shared libraries to be loaded for any ELF core files. We now detect if we have a core file and after reading the DYLDRendezvous::m_current.state from memory we set it to eConsistent, which causes DYLDRendezvous::GetAction() to return the correct action of eTakeSnapshot and shared libraries get loaded.
We also improve the DynamicLoaderPOSIXDYLD class to not try and set any breakpoints to catch shared library loads/unloads when we have a core file, which saves a bit of time.
Differential Revision: https://reviews.llvm.org/D134842
Fix a small thinko in https://reviews.llvm.org/D133534 . Normally
DynamicLoaderDarwinKernels are created via the CreateInstance plugin
method, and that plugin method sets the Process CanJIT to false.
In the above patch, I added a new code path that can call the
DynamicLoaderDarwinKernel ctor directly, without going through
CreateInstance, and CanJIT was not being correctly set for the
process.
rdar://101148552
In https://reviews.llvm.org/D133534 I made a little cleanup
to DynamicLoaderDarwinKernel::CreateInstance and unintentionally
changed the logic. Previously it would not create an instance
if there was a binary given to lldb and it was not a kernel.
With my change, the absence of any binary would also cause it
to not create. So connecting to a kernel without any binaries
would fail.
rdar://100985097
I went over the output of the following mess of a command:
(ulimit -m 2000000; ulimit -v 2000000; git ls-files -z | parallel
--xargs -0 cat | aspell list --mode=none --ignore-case | grep -E
'^[A-Za-z][a-z]*$' | sort | uniq -c | sort -n | grep -vE '.{25}' |
aspell pipe -W3 | grep : | cut -d' ' -f2 | less)
and proceeded to spend a few days looking at it to find probable typos
and fixed a few hundred of them in all of the llvm project (note, the
ones I found are not anywhere near all of them, but it seems like a
good start).
Differential revision: https://reviews.llvm.org/D131122
DynamicLoaderDarwinKernel calls in to PlatformDarwinKernel, and
with my changes in https://reviews.llvm.org/D133534, PlatformDarwinKernel
calls in to DynamicLoaderDarwinKernel. This results in a cmake
dependency if accurately included in the link libraries list.
lldbPluginDynamicLoaderDarwinKernel is specfically for kernel
debugging and is uncommonly linked in to anything except a full
lldb. lldbPluginPlatformMacOSX is any Darwin platform, including
PlatformDarwinKernel, and is referenced a number of time in shell
tests, for instance.
I believe anything linking the darwin kernel DynamicLoader plugin
will already have lldbPluginPlatformMacOSX in its dependency list,
so not explicitly expressing this dependency is safe.
Complete support of the binary-addresses key in the qProcessInfo packet
in ProcessGDBRemote, for detecting if one of the binaries needs to be
handled by a Platform plugin, and can be used to set the Process'
DynamicLoader plugin and the Target's Platform plugin.
Implement this method in PlatformDarwinKernel to recognize a kernel
fileset at that address, find the actual kernel address in the
fileset, set DynamicLoaderDarwinKernel and PlatformDarwinKernel
in the Process/Target; register the kernel address with the dynamic
loader so it will be loaded later during attach.
This patch only addresses the live debug scenario with a gdb remote
serial protocol connection. I'll handle corefiles in a subsequent
patch that builds on this.
Differential Revision: https://reviews.llvm.org/D133534
rdar://98754861
LLVM contains a helpful function for getting the size of a C-style
array: `llvm::array_lengthof`. This is useful prior to C++17, but not as
helpful for C++17 or later: `std::size` already has support for C-style
arrays.
Change call sites to use `std::size` instead.
Differential Revision: https://reviews.llvm.org/D133501
arm64e platforms.
On arm64e-capable Apple platforms, the system libraries are always
arm64e, but applications often are arm64. When a target is created
from file, LLDB recognizes it as an arm64 target, but debugserver will
still (technically correct) report the process as being arm64e. For
consistency, set the target to arm64 here.
rdar://92248684
Differential Revision: https://reviews.llvm.org/D133069
Previously, depending on how you constructed a UUID from data or a
StringRef, an input value of all zeros was valid (e.g. setFromData)
or not (e.g. setFromOptionalData). Since there was no way to tell
which interpretation to use, it was done somewhat inconsistently.
This standardizes the meaning of a UUID of all zeros to Not Valid,
and removes all the Optional methods and their uses, as well as the
static factories that supported them.
Differential Revision: https://reviews.llvm.org/D132191