ConstString can be implicitly converted into a llvm::StringRef. This is
very useful in many places, but it also hides places where we are
creating a ConstString only to use it as a StringRef for the entire
lifespan of the ConstString object.
I locally removed the implicit conversion and found some of the places we
were doing this.
Differential Revision: https://reviews.llvm.org/D159237
This patch refactors the `StructuredData::Integer` class to make it
templated, makes it private and adds 2 public specialization for both
`int64_t` & `uint64_t` with a public type aliases, respectively
`SignedInteger` & `UnsignedInteger`.
It adds new getter for signed and unsigned interger values to the
`StructuredData::Object` base class and changes the implementation of
`StructuredData::Array::GetItemAtIndexAsInteger` and
`StructuredData::Dictionary::GetValueForKeyAsInteger` to support signed
and unsigned integers.
This patch also adds 2 new `Get{Signed,Unsigned}IntegerValue` to the
`SBStructuredData` class and marks `GetIntegerValue` as deprecated.
Finally, this patch audits all the caller of `StructuredData::Integer`
or `StructuredData::GetIntegerValue` to use the proper type as well the
various tests that uses `SBStructuredData.GetIntegerValue`.
rdar://105575764
Differential Revision: https://reviews.llvm.org/D150485
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
Use templates to simplify {Get,Set}PropertyAtIndex. It has always
bothered me how cumbersome those calls are when adding new properties.
After this patch, SetPropertyAtIndex infers the type from its arguments
and GetPropertyAtIndex required a single template argument for the
return value. As an added benefit, this enables us to remove a bunch of
wrappers from UserSettingsController and OptionValueProperties.
Differential revision: https://reviews.llvm.org/D149774
The majority of call sites are nullptr as the execution context.
Refactor OptionValueProperties to make the argument optional and
simplify all the callers.
Various OptionValue related classes are passing around will_modify but
the value is never used. This patch simplifies the interfaces by
removing the redundant argument.
Similar to fdbe7c7faa, refactor OptionValueProperties to return a
std::optional instead of taking a fail value. This allows the caller to
handle situations where there's no value, instead of being unable to
distinguish between the absence of a value and the value happening the
match the fail value. When a fail value is required,
std::optional::value_or() provides the same functionality.
Add a new setting (debugger.external-editor) to specify an external
editor. The setting takes precedence over the existing
LLDB_EXTERNAL_EDITOR environment variable.
Differential revision: https://reviews.llvm.org/D149565
This patch refactors the macOS implementation of
OpenFileInExternalEditor. It fixes an AppleEvent memory leak, the
caching of LLDB_EXTERNAL_EDITOR and speculatively fixes a crash when
CFURL is NULL (rdar://108633464). The new code also improves error
handling, readability and documents calls to the CoreFoundation Launch
Services APIs.
A bunch of the Launch Services APIs have been deprecated
(LSFindApplicationForInfo, LSOpenURLsWithRole). The preferred API is
LSOpenCFURLRef but it doesn't specifying the "location" Apple Event
which is used to highlight the current line and switching over would
regress the existing behavior.
rdar://108633464
Differential revision: https://reviews.llvm.org/D149482
This is a user facing action, it is meant to focus the user's attention on
something other than the 0th frame when you stop somewhere where that's
helpful. For instance, stopping in pthread_kill after an assert will select
the assert frame.
This is not something you want to have happen internally in lldb, both
because internally you really don't want the selected frame changing out
from under you, and because the recognizers can do arbitrary work, and that
can cause deadlocks or other unexpected behavior.
However, it's not something that the current code does
explicitly after a stop has been delivered, it's expected to happen implicitly
as part of stopping. I changing this to call SMRF explicitly after a user
stop, but that got pretty ugly quickly.
So I added a bool to control whether to run this and audited all the current
uses to determine whether we're returning to the user or not.
Differential Revision: https://reviews.llvm.org/D148863
There's no reason these strings need to be in the ConstString
StringPool, they're already string literals with static lifetime.
I plan on addressing other similar functions in follow up commits.
Differential Revision: https://reviews.llvm.org/D147833
SelectMostRelevantFrame triggers the StackFrameRecognizer construction,
which can run arbitrary Python code, call expressions etc. WillStop gets
called on every private stop while the recognizers are a user-facing
feature, so first off doing this work on every stop is inefficient. But
more importantly, you can get in to situations where the recognizer
causes an expression to get run, then when we fetch the stop event at
the end of the expression evaluation, we call WillStop again on the
expression handling thread, which will do the same StackFrameRecognizer
work again. If anyone is locking along that path, you will end up with a
deadlock between the two threads.
The example that brought this to my attention was the
objc_exception_throw recognizer which can cause the objc runtime
introspection functions to get run, and those take a lock in
AppleObjCRuntimeV2::DynamicClassInfoExtractor::UpdateISAToDescriptorMap
along this path, so the second thread servicing the expression deadlocks
against the first thread waiting for the expression to complete.
It makes more sense to have the frame recognizers run on demand, either
when someone asks for the variables for the frame, or when someone does
GetSelectedFrame. The former already worked that way, the only reason
this was being done in WillStop was because the StackFrameRecognizers
can change the SelectedFrame, so you needed to run them before the
anyone requested the SelectedFrame.
This patch moves SelectMostRelevantFrame to StackFrameList, and runs it
when GetSelectedFrame is called for the first time on a given stop. If
you call SetSelectedFrame before GetSelectedFrame, then you should NOT
run the recognizer & change the frame out from under you. This patch
also makes that work. There were already tests for this behavior, and
for the feature that caused the hang, but the hang is racy, and it
doesn't trigger all the time, so I don't have a way to test that
explicitly.
One more detail: it's actually pretty easy to end up calling
GetSelectedFrame, for instance if you ask for the best ExecutionContext
from an ExecutionContextRef it will fill the StackFrame with the result
of GetSelectedFrame and that would still have the same problems if this
happens on the Private State Thread. So this patch also short-circuits
SelectMostRelevantFrame if run on the that thread. I can't think of any
reason the computations that go on on the Private State Thread would
actually want the SelectedFrame - that's a user-facing concept, so
avoiding that complication is the best way to go.
rdar://107643231
Differential revision: https://reviews.llvm.org/D147753
We need to step the watchpoint instruction in these cases, but the
when we queued the ThreadPlanStepOverWatchpoint to do this, we didn't
make it a Controlling plan. So if you are stepping, this plan returns as
though it were a utility plan, and the stepping plan keeps going.
This only partially fixes the problem on Darwin; there's another bug
with reporting a watchpoint when we're instruction single stepping over
an instruction that triggers a watchpoint. The kernel reports the
"single step completed" but not the watchpoint hit. So this commit
also refactors the test into a part that works (at least on Darwin) and
a part that still fails.
We may have to adjust the test result expectations for other systems after
this fix.
Differential Revision: https://reviews.llvm.org/D146337
std::optional::value() has undesired exception checking semantics and is
unavailable in older Xcode (see _LIBCPP_AVAILABILITY_BAD_OPTIONAL_ACCESS). The
call sites block std::optional migration.
The dynamic linker on Darwin, dyld, can provide status of
the process state for a few significant points early on,
most importantly, when libSystem has been initialized and it
is safe to call functions behind the scenes. Pipe this
information up from debugserver to DynamicLoaderMacOS, for
the DynamicLoader::IsFullyInitialized() method, then have
Thread::SafeToCallFunctions use this information. Finally,
for the two utility functions in the AppleObjCRuntimeV2
LanguageRuntime plugin that I was fixing, call this method
before running our utility functions to collect the list of
objc classes registered in the runtime.
User expressions will still be allowed to run any time -
we assume the user knows what they are doing - but these
two additional utility functions that they are unaware of
will be limited by this state.
Differential Revision: https://reviews.llvm.org/D139054
rdar://102436092
can probably make function calls.
This commit combines the initial commit (7c240de609af), a fix for x86_64 Linux
(3a0581501e76) and a fix for thinko in a last minute rewrite that I really
should have run the testsuite on.
Also, make sure that all the "I need to step over watchpoint" plans execute
before we call a public stop. Otherwise, e.g. if you have N watchpoints and
a Signal, the signal stop info will get us to stop with the watchpoints in a
half-done state.
Differential Revision: https://reviews.llvm.org/D130674
When seeing the extra space in the log, it wasn't clear if there was a missing
printf argument. Removing the extra space removes the potential confusion.
Most of our code was including Log.h even though that is not where the
"lldb" log channel is defined (Log.h defines the generic logging
infrastructure). This worked because Log.h included Logging.h, even
though it should.
After the recent refactor, it became impossible the two files include
each other in this direction (the opposite inclusion is needed), so this
patch removes the workaround that was put in place and cleans up all
files to include the right thing. It also renames the file to LLDBLog to
better reflect its purpose.
Add Thread::GetSiginfo() and SBThread::GetSiginfo() methods to retrieve
the siginfo value from server.
Differential Revision: https://reviews.llvm.org/D118055
StructuredDataImpl ownership semantics is unclear at best. Various
structures were holding a non-owning pointer to it, with a comment that
the object is owned somewhere else. From what I was able to gather that
"somewhere else" was the SBStructuredData object, but I am not sure that
all created object eventually made its way there. (It wouldn't matter
even if they did, as we are leaking most of our SBStructuredData
objects.)
Since StructuredDataImpl is just a collection of two (shared) pointers,
there's really no point in elaborate lifetime management, so this patch
replaces all StructuredDataImpl pointers with actual objects or
unique_ptrs to it. This makes it much easier to resolve SBStructuredData
leaks in a follow-up patch.
Differential Revision: https://reviews.llvm.org/D114791
[NFC] As part of using inclusive language within the llvm project, this patch
renames master plan to controlling plan in lldb.
Reviewed By: jingham
Differential Revision: https://reviews.llvm.org/D113019
Introduce three new stop reasons for fork, vfork and vforkdone events.
This includes server support for serializing fork/vfork events into
gdb-remote protocol. The stop infos for the two base events take a pair
of PID and TID for the newly forked process.
Differential Revision: https://reviews.llvm.org/D100196
This implements the interactive trace start and stop methods.
This diff ended up being much larger than I anticipated because, by doing it, I found that I had implemented in the beginning many things in a non optimal way. In any case, the code is much better now.
There's a lot of boilerplate code due to the gdb-remote protocol, but the main changes are:
- New tracing packets: jLLDBTraceStop, jLLDBTraceStart, jLLDBTraceGetBinaryData. The gdb-remote packet definitions are quite comprehensive.
- Implementation of the "process trace start|stop" and "thread trace start|stop" commands.
- Implementaiton of an API in Trace.h to interact with live traces.
- Created an IntelPTDecoder for live threads, that use the debugger's stop id as checkpoint for its internal cache.
- Added a functionality to stop the process in case "process tracing" is enabled and a new thread can't traced.
- Added tests
I have some ideas to unify the code paths for post mortem and live threads, but I'll do that in another diff.
Differential Revision: https://reviews.llvm.org/D91679
Some implementations of the DeepCopy function called the copy constructor that copied m_parent member instead of setting a new parent. Others just leaved the base class's members (m_parent, m_callback, m_was_set) empty.
One more problem is that not all classes override this function, e.g. OptionValueArgs::DeepCopy produces OptionValueArray instance, and Target[Process/Thread]ValueProperty::DeepCopy produces OptionValueProperty. This makes downcasting via static_cast invalid.
The patch implements idiom "virtual constructor" to fix these issues.
Add a test that checks DeepCopy for correct copying/setting all data members of the base class.
Differential Revision: https://reviews.llvm.org/D96952
Adjust `ShouldAutoContinue` to be available to any thread plan previous to the plan that
explains a stop, not limited to the parent to the plan that explains the stop.
Before this change, `Thread::ShouldStop` did the following:
1. find the plan that explains the stop
2. if it's not a master plan, continue processing previous (aka parent) plans
3. first, call `ShouldAutoContinue` on the immediate parent of the explaining plan
4. then loop over previous plans, calling `ShouldStop` and `MischiefManaged`
Of note, the iteration in step 4 does not call `ShouldAutoContinue`, so again only the
plan just prior to the explaining plan is given the opportunity to override whether to
continue or stop.
This commit changes the loop call `ShouldAutoContinue`, giving each plan the opportunity
to override `ShouldStop` of previous plans.
Why? This allows a plan to do the following:
1. mark itself done and be popped off the stack
2. allow parent plans to finish their work, and to also be popped off the stack
3. and finally, have the thread continue, not stop
This is useful for stepping into async functions. A plan will would step far enough
enough to set a breakpoint on the async target, and then use `ShouldAutoContinue` to
unwind the necessary stepping, and then have the calling thread continue.
Differential Revision: https://reviews.llvm.org/D97076
Rename `stop_vote` and `run_vote` to `report_stop_vote` and `report_run_vote`
respectively. These variables are limited to logic involving (event) reporting only.
This naming is intended to make their context more clear.
Differential Revision: https://reviews.llvm.org/D96917
Delete unused `EnableTracer()` and `SetTracer()` functions on `Thread`. By deleting
these, their `ThreadPlan` counterparts also become unused.
Then, by deleting `ThreadPlanStack::EnableTracer`, `EnableSingleStep` becomes unused.
With no more callers to `EnableSingleStep`, the value `m_single_step` is always true and
can be removed as well.
Differential Revision: https://reviews.llvm.org/D96666
Correct `RestoreThreadState` to a `void` return type. Also, update the signature of its
callee, `Thread::RestoreThreadStateFromCheckpoint`, by updating it to a `void` return
type, and making it non-`virtual`.
Differential Revision: https://reviews.llvm.org/D96688
`QueueThreadPlanForStepInRange` accepts a `step_into_target`, but the constructor for
`ThreadPlanStepInRange` does not. Instead, a caller would optionally call
`SetStepInTarget()` in a separate statement.
This change adds `step_into_target` as a constructor argument. This simplifies
construction of `ThreadPlanSP`, by avoiding a subsequent downcast and conditional
assignment. This constructor is already used in downstream repos.
Differential Revision: https://reviews.llvm.org/D96539
Dedicated completion for the command `thread plan discard` with a corresponding
test case.
Reviewed By: teemperor
Differential Revision: https://reviews.llvm.org/D83234
Let's just return a std::string to make this safe. formatv seemed overkill for formatting
the return values as they all just append an integer value to a constant string.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D84505