This is a minor step towards deprecating bufferization.alloc_tensor().
It replaces the examples with tensor.empty() and adjusts the underlying
rewriting logic to prepare for this upcoming change.
This commit removes the deallocation capabilities of
one-shot-bufferization. One-shot-bufferization should never deallocate
any memrefs as this should be entirely handled by the
ownership-based-buffer-deallocation pass going forward. This means the
`allow-return-allocs` pass option will default to true now,
`create-deallocs` defaults to false and they, as well as the escape
attribute indicating whether a memref escapes the current region, will
be removed. A new `allow-return-allocs-from-loops` option is added as a
temporary workaround for some bufferization limitations.
This is the first commit in a series with the goal to rework the
BufferDeallocation pass. Currently, this pass heavily relies on copies
to perform correct deallocations, which leads to very slow code and
potentially high memory usage. Additionally, there are unsupported cases
such as returning memrefs which this series of commits aims to add
support for as well.
This first commit removes the deallocation capabilities of
one-shot-bufferization.One-shot-bufferization should never deallocate any
memrefs as this should be entirely handled by the buffer-deallocation pass
going forward. This means the allow-return-allocs pass option will
default to true now, create-deallocs defaults to false and they, as well
as the escape attribute indicating whether a memref escapes the current region,
will be removed.
The documentation should w.r.t. these pass option changes should also be
updated in this commit.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D156662
This patch is part of a larger initiative aimed at fixing floating-point `max` and `min` operations in MLIR: https://discourse.llvm.org/t/rfc-fix-floating-point-max-and-min-operations-in-mlir/72671.
This commit addresses Task 1.2 of the mentioned RFC. By renaming these operations, we align their names with LLVM intrinsics that have corresponding semantics.
sparse_tensor ops cannot be bufferized with One-Shot Bufferize. (They can only be analyzed.) The sparse compiler does the actual lowering to memref. Produce a proper error message instead of crashing.
This fixes#61311.
Differential Revision: https://reviews.llvm.org/D158728
These checks have been fired when comparing same elements like comp(a, a). Let's fix it. I don't have commit rights.
Danila Kutenin
kutdanila@yandex.ru
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D152152
Registering the SparsificationAndBufferization into a proper TD pass
has the advantage that it can be invoked and tested in isolation. This
change also moves some bufferization specific set up from the pipeline
file into the pass file, keeping the logic more locally.
Reviewed By: Peiming
Differential Revision: https://reviews.llvm.org/D158219
This revision is needed to support bufferization of `cf.br`/`cf.cond_br`. It will also be useful for better analysis of loop ops.
This revision generalizes `getAliasingOpResults` to `getAliasingValues`. An OpOperand can now not only alias with OpResults but also with BlockArguments. In the case of `cf.br` (will be added in a later revision): a `cf.br` operand will alias with the corresponding argument of the destination block.
If an op does not implement the `BufferizableOpInterface`, the analysis in conservative. It previously assumed that an OpOperand may alias with each OpResult. It now assumes that an OpOperand may alias with each OpResult and each BlockArgument of the entry block.
Differential Revision: https://reviews.llvm.org/D157957
Consistent order of ops and related methods.
Also, renamed SpGEMMGetSizeOp to SpMatGetSizeOp
since this is a general utility for sparse matrices,
not specific to GEMM ops only.
Reviewed By: Peiming
Differential Revision: https://reviews.llvm.org/D157922
These two headers both contained a strange mix of definitions related to
both patterns and non-pattern transforms. Put patterns and "populate"
functions into Patterns.h and standalone transforms into Transforms.h.
Depends On: D155223
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D155454
This might simplify frontend implementation by avoiding recomputation for the same value.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D154244
At the moment, only the trailing dimensions in the vector type can be
scalable, i.e. this is supported:
vector<2x[4]xf32>
and this is not allowed:
vector<[2]x4xf32>
This patch extends the vector type so that arbitrary dimensions can be
scalable. To this end, an array of bool values is added to every vector
type to denote whether the corresponding dimensions are scalable or not.
For example, for this vector:
vector<[2]x[3]x4xf32>
the following array would be created:
{true, true, false}.
Additionally, the current syntax:
vector<[2x3]x4xf32>
is replaced with:
vector<[2]x[3]x4xf32>
This is primarily to simplify parsing (this way, the parser can easily
process one dimension at a time rather than e.g. tracking whether
"scalable block" has been entered/left).
NOTE: The `isScalableDim` parameter of `VectorType` (introduced in this
patch) makes `numScalableDims` redundant. For the time being,
`numScalableDims` is preserved to facilitate the transition between the
two parameters. `numScalableDims` will be removed in one of the
subsequent patches.
This change is a part of a larger effort to enable scalable
vectorisation in Linalg. See this RFC for more context:
* https://discourse.llvm.org/t/rfc-scalable-vectorisation-in-linalg/
Differential Revision: https://reviews.llvm.org/D153372
Old pattern was missing some cases (e.g. swapping the arguments)
but it also allowed too many cases (e.g. non-empty "absent" or
different arguments for add/mul). This fixes the issues.
Reviewed By: K-Wu
Differential Revision: https://reviews.llvm.org/D153487
The tensor levels are now explicitly categorized into different `LoopCondKind` to instruct LoopEmitter generate different code for different kinds of condition (e.g., `SparseCond`, `SparseSliceCond`, `SparseAffineIdxCond`, etc)
The process of generating a while loop is now dissembled into three steps and they are dispatched to different LoopCondKind handler.
1. Generate LoopCondition (e.g., `pos <= posHi` for `SparseCond`, `slice.isNonEmpty` for `SparseAffineIdxCond`)
2. Generate LoopBody (e.g., compute the coordinates)
3. Generate ExtraChecks (e.g., `if (onSlice(crd))` for `SparseSliceCond`)
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D152464
We recently fixed a bug in "sparsifying" such reductions, since
it incorrectly changed this into reductions over stored elements
only , which only works for add/sub/or/xor. However, we still want
to be able to "sparsify" the reductions even in the general case,
and this is a first step by rewriting them into a custom reduction
that feeds in the implicit zeros. NOTE HOWEVER, that in the long run
we want to do this better and feed in any implicit zero only ONCE
for efficiency.
Reviewed By: Peiming
Differential Revision: https://reviews.llvm.org/D152580