This allows IDEs to render LLDB expression diagnostics to their liking
without relying on characterprecise ASCII art from LLDB. It is exposed
as a versioned SBStructuredData object, since it is expected that this
may need to be tweaked based on actual usage.
This reverts commit a89e01634f.
This is being reverted because it broke the test:
Unwind/trap_frame_sym_ctx.test
/Users/ec2-user/jenkins/workspace/llvm.org/lldb-cmake/llvm-project/lldb/test/Shell/Unwind/trap_frame_sym_ctx.test:21:10: error: CHECK: expected string not found in input
CHECK: frame #2: {{.*}}`main
Currently, our unwinder assumes that the functions are continuous (or at
least, that there are no functions which are "in the middle" of other
functions). Neither of these assumptions is true for functions optimized
by tools like propeller and (probably) bolt.
While there are many things that go wrong for these functions, the
biggest damage is caused by the unwind plan caching code, which
currently takes the maximalist extent of the function and assumes that
the unwind plan we get for that is going to be valid for all code inside
that range. If a part of the function has been moved into a "cold"
section, then the range of the function can be many megabytes, meaning
that any function within that range will probably fail to unwind.
We end up with this maximalist range because the unwinder asks for the
Function object for its range. This is only one of the strategies for
determining the range, but it is the first one -- and also the most
incorrect one. The second choice would is asking the eh_frame section
for the range of the function, and this one returns something reasonable
here (the address range of the current function fragment) -- which it
does because each fragment gets its own eh_frame entry (it has to,
because they have to be continuous).
With this in mind, this patch moves the eh_frame (and debug_frame) to
the front of the queue. I think that preferring this range makes sense
because eh_frame is one of the unwind plans that we return, and some
others (augmented eh_frame) are based on it. In theory this could break
some functions, where the debug info and eh_frame disagree on the extent
of the function (and eh_frame is the one who's wrong), but I don't know
of any such scenarios.
Windows doesn't have a built-in system log. Previously we got away with
writing to stdout and stderr because it was used only sporadically. As
we're trying to make the system log more useful on the other platforms,
the increased use become a concern. Make it a NOOP until someone figures
out a reasonable alternative.
Reverting this again; I added a commit which added @skipIfDarwin
markers to the TestReverseContinueBreakpoints.py and
TestReverseContinueNotSupported.py API tests, which use lldb-server
in gdbserver mode which does not work on Darwin. But the aarch64 ubuntu
bot reported a failure on TestReverseContinueBreakpoints.py,
https://lab.llvm.org/buildbot/#/builders/59/builds/6397
File "/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/llvm-project/lldb/test/API/functionalities/reverse-execution/TestReverseContinueBreakpoints.py", line 63, in test_reverse_continue_skip_breakpoint
self.reverse_continue_skip_breakpoint_internal(async_mode=False)
File "/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/llvm-project/lldb/test/API/functionalities/reverse-execution/TestReverseContinueBreakpoints.py", line 81, in reverse_continue_skip_breakpoint_internal
self.expect(
File "/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/llvm-project/lldb/packages/Python/lldbsuite/test/lldbtest.py", line 2372, in expect
self.runCmd(
File "/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/llvm-project/lldb/packages/Python/lldbsuite/test/lldbtest.py", line 1002, in runCmd
self.assertTrue(self.res.Succeeded(), msg + output)
AssertionError: False is not true : Process should be stopped due to history boundary
Error output:
error: Process must be launched.
This reverts commit 4f297566b3.
This commit only adds support for the
`SBProcess::ReverseContinue()` API. A user-accessible command for this
will follow in a later commit.
This feature depends on a gdbserver implementation (e.g. `rr`) providing
support for the `bc` and `bs` packets. `lldb-server` does not support
those packets, and there is no plan to change that. So, for testing
purposes, `lldbreverse.py` wraps `lldb-server` with a Python
implementation of *very limited* record-and-replay functionality for use
by *tests only*.
The majority of this PR is test infrastructure (about 700 of the 950
lines added).
This patch adds the support to `Process.cpp` to automatically save off
TLS sections, either via loading the memory region for the module, or
via reading `fs_base` via generic register. Then when Minidumps are
loaded, we now specify we want the dynamic loader to be the `POSIXDYLD`
so we can leverage the same TLS accessor code as `ProcessELFCore`. Being
able to access TLS Data is an important step for LLDB generated
minidumps to have feature parity with ELF Core dumps.
This fixes the following assertion: "Cannot create Expected<T> from
Error success value." The problem was that GetFrameBaseValue return
false without updating the Status argument. This patch eliminates the
opportunity for mistakes by returning an llvm:Error.
This commit only adds support for the
`SBProcess::ReverseContinue()` API. A user-accessible command for this
will follow in a later commit.
This feature depends on a gdbserver implementation (e.g. `rr`) providing
support for the `bc` and `bs` packets. `lldb-server` does not support
those packets, and there is no plan to change that. So, for testing
purposes, `lldbreverse.py` wraps `lldb-server` with a Python
implementation of *very limited* record-and-replay functionality for use
by *tests only*.
The majority of this PR is test infrastructure (about 700 of the 950
lines added).
This commit changes the libc++ frame recognizer to hide implementation
details of libc++ more aggressively. The applied heuristic is rather
straightforward: We consider every function name starting with `__` as
an implementation detail.
This works pretty neatly for `std::invoke`, `std::function`,
`std::sort`, `std::map::emplace` and many others. Also, this should
align quite nicely with libc++'s general coding convention of using the
`__` for their implementation details, thereby keeping the future
maintenance effort low.
However, this heuristic by itself does not work in 100% of the cases:
E.g., `std::ranges::sort` is not a function, but an object with an
overloaded `operator()`, which means that there is no actual call
`std::ranges::sort` in the call stack. Instead, there is a
`std::ranges::__sort::operator()` call. To make sure that we don't hide
this stack frame, we never hide the frame which represents the entry
point from user code into libc++ code
LLVM now triggers an assertion when the format string and arguments
don't match. Fix a variety of incorrect format strings I discovered when
enabling logging with a debug build.
Add an "always on" log category and channel. Unlike other, existing log
channels, it is not exposed to users. The channel is meant to be used
sparsely and deliberately for logging high-value information to the
system log.
We have a similar concept in the downstream Swift fork and this has
proven to be extremely valuable. This is especially true on macOS where
system log messages are automatically captured as part of a sysdiagnose.
## Summary
This PR improves `SymbolFileDWARF::FindTypes()` by utilizing the newly
added parent chain `DW_IDX_parent` in `.debug_names`. The proposal was
originally discussed in [this
RFC](https://discourse.llvm.org/t/rfc-improve-dwarf-5-debug-names-type-lookup-parsing-speed/74151).
## Implementation
To leverage the parent chain for `SymbolFileDWARF::FindTypes()`, this PR
adds a new API: `GetTypesWithQuery` in `DWARFIndex` base class. The API
performs the same function as `GetTypes` with additional filtering using
`TypeQuery`. Since this only introduces filtering, the callback
mechanisms at all call sites remain unchanged. A default implementation
is given in `DWARFIndex` class which parses debug info and performs the
matching. In the `DebugNameDWARFIndex` override, the parent_contexts in
the `TypeQuery` is cross checked with parent chain in `.debug_names` for
for much faster filtering before fallback to base implementation for
final filtering.
Unlike the `GetFullyQualifiedType` API, which fully consumes the
`DW_IDX_parent` parent chain for exact matching, these new APIs perform
partial subset matching for type/namespace queries. This is necessary to
support queries involving anonymous or inline namespaces. For instance,
a user might request `NS1::NS2::NS3::Foo`, while the index table's
parent chain might contain `NS1::inline_NS2::NS3::Foo`, which would fail
exact matching.
## Performance Results
In one of our internal target using `.debug_names` + split dwarf.
Expanding a "this" pointer in locals view in VSCode:
94s => 48s. (Not sure why I got 94s this time instead of 70s last week).
---------
Co-authored-by: jeffreytan81 <jeffreytan@fb.com>
When we search for a symbol, we first check if it is in the module_sp of
the current SymbolContext, and if not, we check in the target's modules.
However, the target's ModuleList also includes the already checked
module, which leads to a redundant search in it.
This is a part of #109477 that I'm making into it's own patch. Here we
remove logic from the DYLD that prevents it's logic from running if the
main executable already has a load address. Instead we let the DYLD
fully determine what should be loaded and what shouldn't.
Somewhat recently, we made the change to hide the behavior to save LLDB
session history to the transcript buffer behind the flag
`interpreter.save-transcript`. By default, `interpreter.save-transcript`
is false. See #90703 for context.
I'm making a small update here to our `session save` messaging and some
help docs to clarify for users that aren't aware of this change. Maybe
`interpreter.save-transcript` could be true by default as well. Any
feedback welcome.
# Tests
```
bin/lldb-dotest -p TestSessionSave
```
---------
Co-authored-by: Tom Yang <toyang@fb.com>
This is similar to 9fe455fd0c, but for FA locations instead of
register locations.
This is useful for unwind plans that cannot create abstract unwind
rules, but instead must inspect the state of the program to determine
the current CFA.
Listen to gdbserver-port, accept the connection and run `lldb-server gdbserver --fd` on all platforms.
Parameters --min-gdbserver-port and --max-gdbserver-port are deprecated now.
This is the part 2 of #101283.
Fixes#97537.
The x86 assembly instruction scanner creates incorrect UnwindPlans when
a mid-function epilogue has a non-epilogue instruction in it.
The x86 instruction analysis which creates an UnwindPlan handles
mid-function epilogues by tracking "epilogue instructions" (register
loads from stack, stack pointer increasing, etc) and any UnwindPlan
updates which are NOT epilogue instructions update the "prologue
UnwindPlan" saved row. It detects a LEAVE/RET/unconditional JMP out of
the function and after that instruction, re-instates the "prologue Row".
There's a parallel piece of data tracked across the duration of the
function, current_sp_bytes_offset_from_fa, and we reflect the "value
after prologue instructions" in
prologue_completed_sp_bytes_offset_from_cfa. When the CFA is calculated
in terms of the frame pointer ($ebp/$rbp), we don't add changes to the
stack pointer to the UnwindPlan, so this separate mechanism is used for
the "current value" and the "last value at prologue setup".
(the x86 UnwindPlan generated writes "sp=CFA+0" as a register rule which
is formally correct, but it could also track the stack pointer value as
sp=$rsp+<x> and update this register rule every time $rsp is modified.)
This leads to a bug when there is an instruction in an epilogue which
isn't recognzied as an epilogue instruction.
prologue_completed_sp_bytes_offset_from_cfa is always set to the value
of current_sp_bytes_offset_from_fa unless the current instruction is an
epilogue instruction. With a non-epilogue instruction in the middle of
the epilogue, we suddenly copy a current_sp_bytes_offset_from_fa value
from the middle of the epilogue into this
prologue_completed_sp_bytes_offset_from_cfa. Once the epilogue is
finished, we restore the "prologue Row" and
prologue_completed_sp_bytes_offset_from_cfa. But now $rsp has a very
incorrect value in it.
This patch tracks when we've updated current_sp_bytes_offset_from_fa in
the current instruction analysis. If it was updated looking at an
epilogue instruction, `is_epilogue` will be set correctly. Otherwise
it's a "prologue" instruction and we should update
prologue_completed_sp_bytes_offset_from_cfa. Any instruction that is
unrecognized will leave prologue_completed_sp_bytes_offset_from_cfa
unmodified.
The actual instruction we hit this with was a BTRQ but I added a NOP to
the unit test which is only 1 byte and made the update to the unit test
a little simpler. This bug is hit with a NOP just as well.
UnwindAssemblyInstEmulation has a much better algorithm for handling
mid-function epilogues, which "forward" the current unwind state Row
when it sees branches within the function, to the target instruction
offset. This avoids detecting prologue/epilogue instructions altogether.
rdar://137153323
LLDB code for using the type layout data from DWARF was not kicking in
for types which were initially parsed from a declaration. The problem
was in these lines of code:
```
if (type)
layout_info.bit_size = type->GetByteSize(nullptr).value_or(0) * 8;
```
which determine the types layout size by getting the size from the
lldb_private::Type object. The problem is that if the type object does
not have this information cached, this request can trigger another
(recursive) request to lay out/complete the type. This one, somewhat
surprisingly, succeeds, but does that without the type layout
information (because it hasn't been computed yet). The reasons why this
hasn't been noticed so far are:
- this is a relatively new bug. I haven't checked but I suspect it was
introduced in the "delay type definition search" patchset from this
summer -- if we search for the definition eagerly, we will always have a
cached size value.
- it requires the presence of another bug/issue, as otherwise the
automatically computed layout will match the real thing.
- it reproduces (much) more easily with -flimit-debug-info (though it is
possible to trigger it without that flag).
My fix consists of always fetching type size information from DWARF
(which so far existed as a fallback path). I'm not quite sure why this
code was there in the first place (the code goes back to before the
Great LLDB Reformat), but I don't believe it is necessary, as the type
size (for types parsed from definition DIEs) is set exactly from this
attribute (in ParseStructureLikeDIE).
[lldb][RISCV] add jitted function calls to ABI
Function calls support in LLDB expressions for RISCV: 1 of 4
Augments corresponding functionality to RISCV ABI, which allows to jit
lldb expressions and thus make function calls inside them. Only function
calls with integer and void function arguments and return value are
supported.
[lldb][RISCV] add JIT relocations resolver
Function calls support in LLDB expressions for RISCV: 2 of 4
Adds required RISCV relocations resolving functionality in lldb
ExecutionEngine.
[lldb][RISCV] RISC-V large code model in lldb expressions
Function calls support in LLDB expressions for RISCV: 3 of 4
This patch sets large code model in MCJIT settings for RISC-V 64-bit targets
that allows to make assembly jumps at any 64bit address. This is needed,
because resulted jitted code may contain more that +-2GB jumps, that are
not available in RISC-V with medium code model.
[lldb][RISCV] doubles support in lldb expressions
Function calls support in LLDB expressions for RISCV: 4 of 4
This patch adds desired feature flags in MCJIT compiler to enable
hard-float instructions if target supports them and allows to use floats
and doubles in lldb expressions.
They are close enough to swap lldb's `DWARFDebugArangeSet` with the llvm
one.
The difference is that llvm's `DWARFDebugArangeSet` add empty ranges
when extracting. To accommodate this, `DWARFDebugAranges` in lldb
filters out empty ranges when extracting.
As this comment around target initialization implies:
```
// This can be NULL if we don't know anything about the architecture or if
// the target for an architecture isn't enabled in the llvm/clang that we
// built
```
There are cases where we might fail to call `InitBuiltinTypes` when
creating the backing `ASTContext` for a `TypeSystemClang`. If that
happens, the builtins `QualType`s, e.g., `VoidPtrTy`/`IntTy`/etc., are
not initialized and dereferencing them as we do in
`GetBuiltinTypeForEncodingAndBitSize` (and other places) will lead to
nullptr-dereferences. Example backtrace:
```
(lldb) run
Assertion failed: (!isNull() && "Cannot retrieve a NULL type pointer"), function getCommonPtr, file Type.h, line 958.
Process 2680 stopped
* thread #15, name = '<lldb.process.internal-state(pid=2712)>', stop reason = hit program assert
frame #4: 0x000000010cdf3cdc liblldb.20.0.0git.dylib`DWARFASTParserClang::ExtractIntFromFormValue(lldb_private::CompilerType const&, lldb_private::plugin::dwarf::DWARFFormValue const&) const (.cold.1) +
liblldb.20.0.0git.dylib`DWARFASTParserClang::ParseObjCMethod(lldb_private::ObjCLanguage::MethodName const&, lldb_private::plugin::dwarf::DWARFDIE const&, lldb_private::CompilerType, ParsedDWARFTypeAttributes
, bool) (.cold.1):
-> 0x10cdf3cdc <+0>: stp x29, x30, [sp, #-0x10]!
0x10cdf3ce0 <+4>: mov x29, sp
0x10cdf3ce4 <+8>: adrp x0, 545
0x10cdf3ce8 <+12>: add x0, x0, #0xa25 ; "ParseObjCMethod"
Target 0: (lldb) stopped.
(lldb) bt
* thread #15, name = '<lldb.process.internal-state(pid=2712)>', stop reason = hit program assert
frame #0: 0x0000000180d08600 libsystem_kernel.dylib`__pthread_kill + 8
frame #1: 0x0000000180d40f50 libsystem_pthread.dylib`pthread_kill + 288
frame #2: 0x0000000180c4d908 libsystem_c.dylib`abort + 128
frame #3: 0x0000000180c4cc1c libsystem_c.dylib`__assert_rtn + 284
* frame #4: 0x000000010cdf3cdc liblldb.20.0.0git.dylib`DWARFASTParserClang::ExtractIntFromFormValue(lldb_private::CompilerType const&, lldb_private::plugin::dwarf::DWARFFormValue const&) const (.cold.1) +
frame #5: 0x0000000109d30acc liblldb.20.0.0git.dylib`lldb_private::TypeSystemClang::GetBuiltinTypeForEncodingAndBitSize(lldb::Encoding, unsigned long) + 1188
frame #6: 0x0000000109aaaed4 liblldb.20.0.0git.dylib`DynamicLoaderMacOS::NotifyBreakpointHit(void*, lldb_private::StoppointCallbackContext*, unsigned long long, unsigned long long) + 384
```
This patch adds a one-time user-visible warning for when we fail to
initialize the AST to indicate that initialization went wrong for the
given target. Additionally, we add checks for whether one of the
`ASTContext` `QualType`s is invalid before dereferencing any builtin
types.
The warning would look as follows:
```
(lldb) target create "a.out"
Current executable set to 'a.out' (arm64).
(lldb) b main
warning: Failed to initialize builtin ASTContext types for target 'some-unknown-triple'. Printing variables may behave unexpectedly.
Breakpoint 1: where = a.out`main + 8 at stepping.cpp:5:14, address = 0x0000000100003f90
```
rdar://134869779
In my prior two save core API's, I experimented on how to save stacks
with the new API. I incorrectly left these in, as the existing
`m_thread_by_range_end` was the correct choice.
I have removed the no-op collection, and moved to use the proper one.
It's worth noting this was not caught by testing because we do not
verify where the items are contained in the minidump. This would require
a test being aware of how minidumps are structured, or adding a textual
tool that we can then scan the output of.
This patch allows offsets to the DW_AT_frame_base to exceed 4GB. Prior
to this, for any .debug_info.dwo offset that exceeded 4GB, we would
truncate the offset to the DW_AT_frame_base expression bytes to be 32
bit only. Changing the offset to 64 bits restores correct functionality.
No test for this as we don't want to create a .dwp file that has a
.debug_info.dwo size that is over 4GB.
This patch is a reworking of Pete Lawrence's (@PortalPete) proposal
for better expression evaluator error messages:
https://github.com/llvm/llvm-project/pull/80938
Before:
```
$ lldb -o "expr a+b"
(lldb) expr a+b
error: <user expression 0>:1:1: use of undeclared identifier 'a'
a+b
^
error: <user expression 0>:1:3: use of undeclared identifier 'b'
a+b
^
```
After:
```
(lldb) expr a+b
^ ^
│ ╰─ error: use of undeclared identifier 'b'
╰─ error: use of undeclared identifier 'a'
```
This eliminates the confusing `<user expression 0>:1:3` source
location and avoids echoing the expression to the console again, which
results in a cleaner presentation that makes it easier to grasp what's
going on. You can't see it here, bug the word "error" is now also in
color, if so desired.
Depends on https://github.com/llvm/llvm-project/pull/106442.
This patch is a reworking of Pete Lawrence's (@PortalPete) proposal
for better expression evaluator error messages:
https://github.com/llvm/llvm-project/pull/80938
Before:
```
$ lldb -o "expr a+b"
(lldb) expr a+b
error: <user expression 0>:1:1: use of undeclared identifier 'a'
a+b
^
error: <user expression 0>:1:3: use of undeclared identifier 'b'
a+b
^
```
After:
```
(lldb) expr a+b
^ ^
│ ╰─ error: use of undeclared identifier 'b'
╰─ error: use of undeclared identifier 'a'
```
This eliminates the confusing `<user expression 0>:1:3` source
location and avoids echoing the expression to the console again, which
results in a cleaner presentation that makes it easier to grasp what's
going on. You can't see it here, bug the word "error" is now also in
color, if so desired.
Depends on https://github.com/llvm/llvm-project/pull/106442.
…NFC]
This patch is the first patch in a series reworking of Pete Lawrence's
(@PortalPete) amazing proposal for better expression evaluator error
messages (https://github.com/llvm/llvm-project/pull/80938)
This patch is preparatory patch for improving the rendering of
expression evaluator diagnostics. Currently diagnostics are rendered
into a string and the command interpreter layer then textually parses
words like "error:" to (sometimes) color the output accordingly. In
order to enable user interfaces to do better with diagnostics, we need
to store them in a machine-readable fromat. This patch does this by
adding a new llvm::Error kind wrapping a DiagnosticDetail struct that
is used when the error type is eErrorTypeExpression. Multiple
diagnostics are modeled using llvm::ErrorList.
Right now the extra information is not used by the CommandInterpreter,
this will be added in a follow-up patch!
Don't call raw_string_ostream::flush(), which is essentially a no-op. As
specified in the docs, raw_string_ostream is always unbuffered. (
65b13610a5 for further reference )
https://github.com/llvm/llvm-project/pull/109934 added FPMR which
uses a bit in hwcaps greater than 31. So it marked the 1 with UL
which is fine on 64 bit systems but for 32 bit UL is 4 bytes.
Use ULL so we aren't invoking undefined behaviour.
lldb scans the corefile for dyld, the dynamic loader, and when it
finds a mach-o header that looks like dyld, it tries to read all
of the load commands and symbol table out of the corefile memory.
If the load comamnds and symbol table are absent or malformed,
it doesn't handle this case and can crash. Back out when we
fail to create a Module from the dyld binary.
rdar://136659551
Otherwise known as FEAT_FPMR. This register controls the behaviour of
floating point operations.
https://developer.arm.com/documentation/ddi0601/2024-06/AArch64-Registers/FPMR--Floating-point-Mode-Register
As the current floating point register contexts are fixed size, this has
been placed in a new set. Linux kernel patches have landed already, so
you can cross check with those.
To simplify testing we're not going to do any floating point operations,
just read and write from the program and debugger to make sure each sees
the other's values correctly.
The function should use the by-ref SBError argument instead of creating
a new one. This code has been here since ~forever, and was probably
copied from methods which return an SBError result (where one needs to
create a local variable).