**Summary**
In a program such as:
```
namespace A {
namespace B {
struct Bar {};
}
}
namespace B {
struct Foo {};
}
```
...LLDB would run into issues such as:
```
(lldb) expr ::B::Foo f
error: expression failed to parse:
error: <user expression 0>:1:6: no type named 'Foo' in namespace 'A::B'
::B::Foo f
~~~~~^
```
This is because the `SymbolFileDWARF::FindNamespace` implementation
will return *any* namespace it finds if the `parent_decl_ctx` provided
is empty. In `FindExternalVisibleDecls` we use this API to find the
namespace that symbol `B` refers to. If `A::B` happened to be the one
that `SymbolFileDWARF::FindNamespace` looked at first, we would try
to find `struct Foo` in `A::B`. Hence the error.
This patch proposes a new `SymbolFileDWARF::FindNamespace` API that
will only find a match for top-level namespaces, which is what
`FindExternalVisibleDecls` is attempting anyway; it just never
accounted for multiple namespaces of the same name.
**Testing**
* Added API test-case
Differential Revision: https://reviews.llvm.org/D147436
Implement SymbolFile::GetCompileOptions, which returns a map from
compilation units to compilation arguments associated with that unit.
Differential Revision: https://reviews.llvm.org/D147748
SymbolFile::ParseAllLanguages allows collecting the languages of the
extra compile units a SymbolFileDWARFDebugMap may have, which can't
be accessed otherwise. For every other symbol file type, it should
behave exactly the same as ParseLanguage.
rdar://97610458
Differential Revision: https://reviews.llvm.org/D146265
This came out of from https://discourse.llvm.org/t/dwarf-dwp-4gb-limit/63902
With big binaries we can have .dwp files where .debug_info.dwo section can grow
beyond 4GB. We would like to support this in LLVM and in LLDB.
The plan is to enable manual parsing of cu/tu index in DWARF library
(https://reviews.llvm.org/D137882), and then
switch internal index data structure to 64 bit.
For the second part is to enable 64bit offset support in LLDB with
this patch.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D138618
This came out of from https://discourse.llvm.org/t/dwarf-dwp-4gb-limit/63902
With big binaries we can have .dwp files where .debug_info.dwo section can grow
beyond 4GB. We would like to support this in LLVM and in LLDB.
The plan is to enable manual parsing of cu/tu index in DWARF library
(https://reviews.llvm.org/D137882), and then
switch internal index data structure to 64 bit.
For the second part is to enable 64bit offset support in LLDB with
this patch.
Depends on D139955
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D138618
This came out of from https://discourse.llvm.org/t/dwarf-dwp-4gb-limit/63902
With big binaries we can have .dwp files where .debug_info.dwo section can grow
beyond 4GB. We would like to support this in LLVM and in LLDB.
The plan is to enable manual parsing of cu/tu index in DWARF library
(https://reviews.llvm.org/D137882), and then
switch internal index data structure to 64 bit.
For the second part is to enable 64bit offset support in LLDB with
this patch.
Depends on D139955
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D138618
In preparation for eanbling 64bit support in LLDB switching to use llvm::formatv
instead of format MACROs.
Reviewed By: labath, JDevlieghere
Differential Revision: https://reviews.llvm.org/D139955
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Currently, SymbolFileDWARFDebugMap works on the assumption that there is
only one compile unit per object file. This patch documents this
limitation (when using the general SymbolFile API), and allows users of
the concrete SymbolFileDWARFDebugMap class to find out about these extra
compile units.
Differential Revision: https://reviews.llvm.org/D136114
Now that we display an error when users try to get variables, but something in the debug info is preventing variables from showing up, track this with a new bool in each module's statistic information named "debugInfoHadVariableErrors".
This patch modifies the code to track when we have variable errors in a module and adds accessors to get/set this value. This value is used in the module statistics and we added a test to verify this value gets set correctly.
Differential Revision: https://reviews.llvm.org/D134508
Summary:
Many times when debugging variables might not be available even though a user can successfully set breakpoints and stops somewhere. Letting the user know will help users fix these kinds of issues and have a better debugging experience.
Examples of this include:
- enabling -gline-tables-only and being able to set file and line breakpoints and yet see no variables
- unable to open object file for DWARF in .o file debugging for darwin targets due to modification time mismatch or not being able to locate the N_OSO file.
This patch adds an new API to SBValueList:
lldb::SBError lldb::SBValueList::GetError();
object so that if you request a stack frame's variables using SBValueList SBFrame::GetVariables(...), you can get an error the describes why the variables were not available.
This patch adds the ability to get an error back when requesting variables from a lldb_private::StackFrame when calling GetVariableList.
It also now shows an error in response to "frame variable" if we have debug info and are unable to get varialbes due to an error as mentioned above:
(lldb) frame variable
error: "a.o" object from the "/tmp/libfoo.a" archive: either the .o file doesn't exist in the archive or the modification time (0x63111541) of the .o file doesn't match
Reviewers: labath JDevlieghere aadsm yinghuitan jdoerfert sscalpone
Subscribers:
Differential Revision: https://reviews.llvm.org/D133164
Many times when debugging variables might not be available even though a user can successfully set breakpoints and stops somewhere. Letting the user know will help users fix these kinds of issues and have a better debugging experience.
Examples of this include:
- enabling -gline-tables-only and being able to set file and line breakpoints and yet see no variables
- unable to open object file for DWARF in .o file debugging for darwin targets due to modification time mismatch or not being able to locate the N_OSO file.
This patch adds an new API to SBValueList:
lldb::SBError lldb::SBValueList::GetError();
object so that if you request a stack frame's variables using SBValueList SBFrame::GetVariables(...), you can get an error the describes why the variables were not available.
This patch adds the ability to get an error back when requesting variables from a lldb_private::StackFrame when calling GetVariableList.
It also now shows an error in response to "frame variable" if we have debug info and are unable to get varialbes due to an error as mentioned above:
(lldb) frame variable
error: "a.o" object from the "/tmp/libfoo.a" archive: either the .o file doesn't exist in the archive or the modification time (0x63111541) of the .o file doesn't match
Differential Revision: https://reviews.llvm.org/D133164
This reverts commit 967df65a36.
This fixes test/Shell/SymbolFile/NativePDB/find-functions.cpp. When
looking up functions with the PDB plugins, if we are looking for a
full function name, we should use `GetName` to populate the `name`
field instead of `GetLookupName` since `GetName` has the more
complete information.
Context:
When setting a breakpoint by name, we invoke Module::FindFunctions to
find the function(s) in question. However, we use a Module::LookupInfo
to first process the user-provided name and figure out exactly what
we're looking for. When we actually perform the function lookup, we
search for the basename. After performing the search, we then filter out
the results using Module::LookupInfo::Prune. For example, given
a::b::foo we would first search for all instances of foo and then filter
out the results to just names that have a::b::foo in them. As one can
imagine, this involves a lot of debug info processing that we do not
necessarily need to be doing. Instead of doing one large post-processing
step after finding each instance of `foo`, we can filter them as we go
to save time.
Some numbers:
Debugging LLDB and placing a breakpoint on
llvm::itanium_demangle::StringView::begin without this change takes
approximately 70 seconds and resolves 31,920 DIEs. With this change,
placing the breakpoint takes around 30 seconds and resolves 8 DIEs.
Differential Revision: https://reviews.llvm.org/D129682
This patch removes the ability to instantiate the LLDB FileSystem class
with a FileCollector. It keeps the ability to collect files, but uses
the FileCollectorFileSystem to do that transparently.
Because the two are intertwined, this patch also removes the
finalization logic which copied the files over out of process.
This mainly affects Darwin targets (macOS, iOS, tvOS and watchOS) when these targets don't use dSYM files and the debug info was in the .o files. All modules, including the .o files that are loaded by the debug maps, were in the global module list. This was great because it allows us to see each .o file and how much it contributes. There were virtual functions on the SymbolFile class to fetch the symtab/debug info parse and index times, and also the total debug info size. So the main executable would add all of the .o file's stats together and report them as its own data. Then the "totalDebugInfoSize" and many other "totalXXX" top level totals were all being added together. This stems from the fact that my original patch only emitted the modules for a target at the start of the patch, but as comments from the reviews came in, we switched to emitting all of the modules from the global module list.
So this patch fixes it so when we have a SymbolFileDWARFDebugMap that loads .o files, the main executable will have no debug info size or symtab/debug info parse/index times, but each .o file will have its own data as a separate module. Also, to be able to tell when/if we have a dSYM file I have added a "symbolFilePath" if the SymbolFile for the main modules path doesn't match that of the main executable. We also include a "symbolFileModuleIdentifiers" key in each module if the module does have multiple lldb_private::Module objects that contain debug info so that you can track down the information for a module and add up the contributions of all of the .o files.
Tests were added that are labeled with @skipUnlessDarwin and @no_debug_info_test that test all of this functionality so it doesn't regress.
For a module with a dSYM file, we can see the "symbolFilePath" is included:
```
"modules": [
{
"debugInfoByteSize": 1070,
"debugInfoIndexLoadedFromCache": false,
"debugInfoIndexSavedToCache": false,
"debugInfoIndexTime": 0,
"debugInfoParseTime": 0,
"identifier": 4873280600,
"path": "/Users/gclayton/Documents/src/lldb/main/Debug/lldb-test-build.noindex/commands/statistics/basic/TestStats.test_dsym_binary_has_symfile_in_stats/a.out",
"symbolFilePath": "/Users/gclayton/Documents/src/lldb/main/Debug/lldb-test-build.noindex/commands/statistics/basic/TestStats.test_dsym_binary_has_symfile_in_stats/a.out.dSYM/Contents/Resources/DWARF/a.out",
"symbolTableIndexTime": 7.9999999999999996e-06,
"symbolTableLoadedFromCache": false,
"symbolTableParseTime": 7.8999999999999996e-05,
"symbolTableSavedToCache": false,
"triple": "arm64-apple-macosx12.0.0",
"uuid": "E1F7D85B-3A42-321E-BF0D-29B103F5F2E3"
},
```
And for the DWARF in .o file case we can see the "symbolFileModuleIdentifiers" in the executable's module stats:
```
"modules": [
{
"debugInfoByteSize": 0,
"debugInfoIndexLoadedFromCache": false,
"debugInfoIndexSavedToCache": false,
"debugInfoIndexTime": 0,
"debugInfoParseTime": 0,
"identifier": 4603526968,
"path": "/Users/gclayton/Documents/src/lldb/main/Debug/lldb-test-build.noindex/commands/statistics/basic/TestStats.test_no_dsym_binary_has_symfile_identifiers_in_stats/a.out",
"symbolFileModuleIdentifiers": [
4604429832
],
"symbolTableIndexTime": 7.9999999999999996e-06,
"symbolTableLoadedFromCache": false,
"symbolTableParseTime": 0.000112,
"symbolTableSavedToCache": false,
"triple": "arm64-apple-macosx12.0.0",
"uuid": "57008BF5-A726-3DE9-B1BF-3A9AD3EE8569"
},
```
And the .o file for 4604429832 looks like:
```
{
"debugInfoByteSize": 1028,
"debugInfoIndexLoadedFromCache": false,
"debugInfoIndexSavedToCache": false,
"debugInfoIndexTime": 0,
"debugInfoParseTime": 6.0999999999999999e-05,
"identifier": 4604429832,
"path": "/Users/gclayton/Documents/src/lldb/main/Debug/lldb-test-build.noindex/commands/statistics/basic/TestStats.test_no_dsym_binary_has_symfile_identifiers_in_stats/main.o",
"symbolTableIndexTime": 0,
"symbolTableLoadedFromCache": false,
"symbolTableParseTime": 0,
"symbolTableSavedToCache": false,
"triple": "arm64-apple-macosx"
}
```
Differential Revision: https://reviews.llvm.org/D119400
std::chrono::duration types are not thread-safe, and they cannot be
concurrently updated from multiple threads. Currently, we were doing
such a thing (only) in the DWARF indexing code
(DWARFUnit::ExtractDIEsRWLocked), but I think it can easily happen that
someone else tries to update another statistic like this without
bothering to check for thread safety.
This patch changes the StatsDuration type from a simple typedef into a
class in its own right. The class stores the duration internally as
std::atomic<uint64_t> (so it can be updated atomically), but presents it
to its users as the usual chrono type (duration<float>).
Differential Revision: https://reviews.llvm.org/D117474
The new key/value pairs that are added to each module's stats are:
"debugInfoByteSize": The size in bytes of debug info for each module.
"debugInfoIndexTime": The time in seconds that it took to index the debug info.
"debugInfoParseTime": The time in seconds that debug info had to be parsed.
At the top level we add up all of the debug info size, parse time and index time with the following keys:
"totalDebugInfoByteSize": The size in bytes of all debug info in all modules.
"totalDebugInfoIndexTime": The time in seconds that it took to index all debug info if it was indexed for all modules.
"totalDebugInfoParseTime": The time in seconds that debug info was parsed for all modules.
Differential Revision: https://reviews.llvm.org/D112501
There is no reason why this function should be returning a ConstString.
While modifying these files, I also fixed several instances where
GetPluginName and GetPluginNameStatic were returning different strings.
I am not changing the return type of GetPluginNameStatic in this patch, as that
would necessitate additional changes, and this patch is big enough as it is.
Differential Revision: https://reviews.llvm.org/D111877
This reverts commits f9aba9a5af and
035217ff51.
As explained in the original commit message, this didn't have the
intended effect of improving the common LLDB use case, but still
provided a marginal improvement for the places where LLDB creates a
scoped time with a string literal.
The reason for the revert is that this change pulls in the os/signpost.h
header in Signposts.h. The former transitively includes loader.h, which
contains a series of macro defines that conflict with MachO.h. There are
ways to work around that, but Adrian and I concluded that none of them
are worth the trade-off in complicating Signposts.h even further.
In all these years, we haven't found a use for this function (it has
zero callers). Lets just remove the boilerplate.
Differential Revision: https://reviews.llvm.org/D109600
One nice feature of the os_signpost API is that format string
substitutions happen in the consumer, not the logging
application. LLVM's current Signpost class doesn't take advantage of
this though and instead always uses a static "Begin/End %s" format
string.
This patch uses variadic macros to allow the API to be used as
intended. Unfortunately, the primary use-case I had in mind (the
LLDB_SCOPED_TIMER() macro) does not get much better from this, because
__PRETTY_FUNCTION__ is *not* a macro, but a static string, so
signposts created by LLDB_SCOPED_TIMER() still use a static "%s"
format string. At least LLDB_SCOPED_TIMERF() works as intended.
This reapplies the previously reverted patch with additional include
order fixes for non-modular builds of LLDB.
Differential Revision: https://reviews.llvm.org/D103575
This patch refactors a good part of the code base turning the usual
FileSpec, Line, Column, CheckInlines, ExactMatch arguments into a
SourceLocationSpec object.
This change is required for a following patch that will add handling of the
column line information when doing symbol resolution.
Differential Revision: https://reviews.llvm.org/D100965
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch introduces a LLDB_SCOPED_TIMER macro to hide the needlessly
repetitive creation of scoped timers in LLDB. It's similar to the
LLDB_LOG(F) macro.
Differential revision: https://reviews.llvm.org/D93663
For Swift LLDB (but potentially also for module support in Clang-land)
we need a way to accumulate the path remappings produced by
Module::RegisterXcodeSDK(). In order to make this work for
SymbolFileDebugMaps, registering the search path remapping with both
modules is necessary.
Differential Revision: https://reviews.llvm.org/D79384
<rdar://problem/62750529>
When debugging from a SymbolMap the creation of CompileUnits for the
individual object files is so lazy that RegisterXcodeSDK() is not
invoked at all before the Swift TypeSystem wants to read it. This
patch fixes this by introducing an explicit
SymbolFile::ParseXcodeSDK() call that can be invoked deterministically
before the result is required.
<rdar://problem/62532151+62326862>
https://reviews.llvm.org/D79273
Summary:
All of our lookup APIs either use `CompilerDeclContext &` or `CompilerDeclContext *` semi-randomly it seems.
This leads to us constantly converting between those two types (and doing nullptr checks when going from
pointer to reference). It also leads to the confusing situation where we have two possible ways to express
that we don't have a CompilerDeclContex: either a nullptr or an invalid CompilerDeclContext (aka a default
constructed CompilerDeclContext).
This moves all APIs to use references and gets rid of all the nullptr checks and conversions.
Reviewers: labath, mib, shafik
Reviewed By: labath, shafik
Subscribers: shafik, arphaman, abidh, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D74607
Move the logic for initialization and termination for
SymbolFileDWARFDebugMap into SymbolFileDWARF so that there's one
initializer for the SymbolFileDWARF plugin.
This is a step towards making the initialize and terminate calls be
generated by CMake, which in turn is towards making it possible to
disable plugins at configuration time.
Differential revision: https://reviews.llvm.org/D74245