The architecture doesn't really matter for the test, at least not until
the dynamic loader can load these fat64 binaries. Use Hawell instead of
arm64 to support older bots that don't know about Apple Silicon triples.
Add suport for MASK style watchpoints on AArch64 in debugserver
on Darwin systems, for watching power-of-2 sized memory ranges.
More work needed in lldb before this can be exposed to the user
(because they will often try watching memory ranges that are not
exactly power-of-2 in size/alignment) but this is the first part
of adding that capability.
Differential Revision: https://reviews.llvm.org/D149792
rdar://108233371
This patch add or removes XFAIL decorator from various tests which were marked
xfail for windows.
since 44363f2 various tests have started passing but introduced a couple of new failures.
Weight is in favor of new XPasses and I have removed XFail decorator from them. Also
some new tests have started failing for which we need to file separate bugs. I have
marked them xfail for now and will add the bug id after investigating the issue.
Differential Revision: https://reviews.llvm.org/D149235
This is an optional request, but supporting it makes the experience
better when re-launching a big binary that takes significant time to
parse: instead of tearing down and re-create the whole session we just
need to kill the current process and launch a new one.
Some non-obvious comments that might help review this change:
* After killing the process, we get an "exited" event for it. Because
the process no longer exists some interesting things can occur that
manifest as flaky failures if not dealt with:
- `EventIsProcessEvent` relies on `SBEvent::GetBroadcasterClass`,
which can crash if the broadcaster is no longer there: the event
only holds a weak_ptr to its broadcaster, and `GetBroadcasterClass`
uses it without checking.
Other `EventIs*` functions look at the flavor of the EventData, so I
have modified EventIsProcessEvent to do that.
- We keep the PID of the old process so we can detect its "exited"
event and not terminate the whole session. But sometimes the
SBProcess we get from the event won't have a PID, for some reason.
* I have factored out the code to launch a process out to a new
LaunchProcess function, so it can be used from both `request_launch`
and `request_restart`.
* The restart_runInTerminal test has the same problem with debug builds
as the original runInTerminal test: when attaching to the launcher
instance of lldb-vscode it takes a long time to parse its debug info.
I have used the same workaround to disable that particular test for
debug builds.
Differential Revision: https://reviews.llvm.org/D147831
Expression evaluation allocates memory for storing intermediate data during evaluation. For it to work properly it has to be allocated within target's available address space, for example within first 0xFFFF bytes for the 16-bit MSP430. The memory for such targets can be very tightly packed, but not all targets support GetMemoryRegionInfo API to pick an unused region, like MSP430 with MSPDebug GDB server.
These settings allow the programmer to manually pick precisely where and how much memory to allocate for expression evaluation in order not to overlap with existing data in process memory.
Reviewed By: bulbazord
Differential Revision: https://reviews.llvm.org/D149262
We just want to test whether the language switch works.
This is easier to control for libc++, since for bots building
the tests against libstdc++ we might not have the necessary
`<compare>` header available currently.
llvm has a structure for maps where the key's type is a string. Using
that also means that the keys for OptionValueDictionary don't stick
around forever in ConstString's StringPool (even after they are gone).
The only thing we lose here is ordering: iterating over the map where the keys
are ConstStrings guarantees that we iterate in alphabetical order.
StringMap makes no guarantees about the ordering when you iterate over
the entire map.
Differential Revision: https://reviews.llvm.org/D149482
The unique_ptr prettyprinter calls `GetValueOfLibCXXCompressedPair`,
which looks for a `__value_` child. However, when the second value in
the compressed pair is not an empty class, there are two `__value_`
children because `__compressed_pair` derives twice from
`__compressed_pair_elem`, one for each member of the pair. And then the
lookup fails because it's ambiguous.
This patch makes the following changes:
- Rename `GetValueOfLibCXXCompressedPair` to
`GetFirstValueOfLibCXXCompressedPair`, and add a similar function to
get the second value. Put both functions in
Plugin/Language/CPlusPlus/LibCxx.cpp because it seems inappropriate to
have libcxx-specific helpers separate from all the libcxx-dependent
code.
- Read the second value of the `__ptr_` pair and display a "deleter"
child in the unique_ptr synthetic child provider, when available.
- Add a test case for the non-empty deleter case.
Differential Revision: https://reviews.llvm.org/D148662
Refactor the debugserver watchpiont support in anticipating of
adding support for AArch64 MASK hardware watchpoints to watch
larger regions of memory. debugserver already had support for
handling a request to watch an unaligned region of memory up
to 8 bytes using Byte Address Select watchpoints - it would split
an unaligned watch request into two aligned doublewords that
could be watched with two hardware watchpoints using the BAS
specification.
This patch generalizes that code for properly aligning, and
possibly splitting, a watchpoint request into two hardware watchpoints
to handle any size request. And separates out the specifics
about BAS watchpoints into its own method, so a sibling method
for MASK watchpoints can be dropped in next.
Differential Revision: https://reviews.llvm.org/D149040
rdar://108233371
The sanity check on the size of the register context we found in
the corefile was off by one, so lldb would not add the register
contents. Add a test case to ensure it doesn't regress.
Differential Revision: https://reviews.llvm.org/D149224
rdar://108306070
This should fix a test failure in TestInteractiveScriptedProcess.py
caused by a missing decorator added in d0d902d.
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch improve the interactive scripted process debugging test by
adding test coverage for child process breakpoint setting and execution
state change.
This patch introduces a new test case for a multiplexed launch, which
does the same thing as the simple passthrough launch. After the
multiplexer process stops, this new test launches 2 other scripted processes
that should contain respectively the even and odd threads from the
multiplexer scripted process.
Then, we create a breakpoint on one the child scripted process, make
sure it was set probably on the child process, the multiplexer process
and the real process. This also test the breakpoint name tagging at the
multiplexer level.
Finally, we resume the child process that had a breakpoint and make sure
that all the processes has stopped at the right location.
Differential Revision: https://reviews.llvm.org/D149179
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch improves breakpoint management when doing interactive
scripted process debugging.
In other to know which process set a breakpoint, we need to do some book
keeping on the multiplexer scripted process. When initializing the
multiplexer, we will first copy breakpoints that are already set on the
driving target.
Everytime we launch or resume, we should copy breakpoints from the
multiplexer to the driving process.
When creating a breakpoint from a child process, it needs to be set both
on the multiplexer and on the driving process. We also tag the created
breakpoint with the name and pid of the originator process.
This patch also implements all the requirement to achieve proper
breakpoint management. That involves:
- Adding python interator for breakpoints and watchpoints in SBTarget
- Add a new `ScriptedProcess.create_breakpoint` python method
Differential Revision: https://reviews.llvm.org/D148548
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch is a proof of concept that shows how a scripted process could
be used with real process to perform interactive debugging.
In this example, we run a process that spawns 10 threads.
That process gets launched by an intermediary scripted process who's job
is to intercept all of it's process events and dispatching them
back either to the real process or to other child scripted processes.
In this example, we have 2 child scripted processes, with even and odd
thread indices. The goal is to be able to do thread filtering and
explore the various interactive debugging approaches, by letting a child
process running when stopping the other process and inspecting it.
Another approach would be to have the child processes execution in-sync
to force running every child process when one of them starts running.
Differential Revision: https://reviews.llvm.org/D145297
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
It was avoiding a crash at the time on macOS, apparently, and
it skipped the test on all platforms. This test passes for me
now on macOS, let's remove the skip and see how the bots go.
We have a handful of places in LLDB where we try to outsmart the logic
in Mangled to determine whether a string is mangled or not. There's at
least one place (*) where we are getting this wrong and causes a subtle
bug. The `cstring_is_mangled` is cheap enough that we should always rely
on it to determine whether a string is mangled or not.
(*) `ObjectFileMachO` assumes that a symbol that starts with a double
underscore (such as `__pthread_kill`) is mangled. That's mostly
harmless, until you use `function.name-without-args` in the frame
format. The formatter calls `Symbol::GetNameNoArguments()` which is a
wrapper around `Mangled::GetName(ePreferDemangledWithoutArguments)`. The
latter will first try using the appropriate language plugin to get the
demangled name without arguments, and if that fails, falls back to
returning the demangled name. Because we forced Mangled to treat the
symbol as a mangled name (even though it's not) there's no demangled
name. The result is that frames don't show any symbol at all.
Differential revision: https://reviews.llvm.org/D148846
Previously if a register had fields we would always print them after the
value if the register was asked for by name.
```
(lldb) register read MDCR_EL3
MDCR_EL3 = 0x00000000
= {
ETBAD = 0
<...>
RLTE = 0
}
```
This can be quite annoying if there are a whole lot of fields but you
want to see the register in a specific format.
```
(lldb) register read MDCR_EL3 -f i
MDCR_EL3 = 0x00000000 unknown udf #0x0
= {
ETBAD = 0
<...lots of fields...>
```
Since it pushes the interesting bit far up the terminal. To solve this,
don't print fields if the user passes --format. If they're doing that
then I think it's reasonable to assume they know what they want and only
want to see that output.
This also gives users a way to silence fields, but not change the format.
By doing `register read foo -f x`. In case they are not useful or perhaps
they are trying to work around a crash.
I have customised the help text for --format for register read to explain this:
```
-f <format> ( --format <format> )
Specify a format to be used for display. If this is set, register fields will not be dispayed.
```
Reviewed By: jasonmolenda
Differential Revision: https://reviews.llvm.org/D148790
In the particular case I was looking at I autogenerated a 128 bit set
of flags that is only 64 bit. This doesn't crash lldb but it was certainly
not expected.
I suspect that we would have crashed if the top 64 bits weren't
marked as unused (or at least invoked some very undefined behaviour).
When this happens, log the details and ignore the flags. Like this:
```
Size of register flags TTBR0_EL1_flags (16 bytes) for register TTBR0_EL1 does not match the register size (8 bytes). Ignoring this set of flags.
```
Turns out a few of the tests relied on this bug so I have updated
them and added a specific test for this case.
Reviewed By: jasonmolenda
Differential Revision: https://reviews.llvm.org/D148715
A default number of addressing bits was hardcoded in
ABIMacOSX_arm64::FixAddress while we updated different
environments to fetch the value dynamically. Remove
the old hardcoded value.
Differential Revision: https://reviews.llvm.org/D148603
rdar://108068497
If this test fails, the error message isn't helpful:
```
self.assertEqual(len(threads), 1,
AssertionError: 0 != 1 : Stopped at breakpoint in exec'ed process
```
This change adds asserts to verify that:
1. The process is stopped
2. For each thread, that the stop reason is None, or Breakpoint
The latter will indicate if execution has stopped for some other reason, and if so what
that reason is.
Differential Revision: https://reviews.llvm.org/D148588
Add MSP430 to the list of available targets, implement MSP430 ABI, add support for debugging targets with 16-bit address size.
The update is intended for use with MSPDebug, a GDB server implementation for MSP430.
Reviewed By: bulbazord, DavidSpickett
Differential Revision: https://reviews.llvm.org/D146965
(Addresses GH#62153)
The `SBType` APIs to retrieve details about template arguments,
such as `GetTemplateArgumentType` or `GetTemplateArgumentKind`
don't "desugar" LValueReferences/RValueReferences or pointers.
So when we try to format a `std::deque&`, the python call to
`GetTemplateArgumentType` fails to get a type, leading to
an `element_size` of `0` and a division-by-zero python exception
(which gets caught by the summary provider silently). This leads
to the contents of such `std::deque&` to be printed incorrectly.
This patch dereferences the reference/pointer before calling
into the above SBAPIs.
**Testing**
* Add API test
Differential Revision: https://reviews.llvm.org/D148531
- Separate the two test and only have TestSymbolFileJSON rely on strip.
- Use different file names to make sure LLDB reloads the module.
This should address all the post commit review from D148062.
Add MSP430 to the list of available targets, implement MSP430 ABI, add support for debugging targets with 16-bit address size.
The update is intended for use with MSPDebug, a GDB server implementation for MSP430.
Reviewed By: bulbazord, DavidSpickett
Differential Revision: https://reviews.llvm.org/D146965
**Summary**
In a program such as:
```
namespace A {
namespace B {
struct Bar {};
}
}
namespace B {
struct Foo {};
}
```
...LLDB would run into issues such as:
```
(lldb) expr ::B::Foo f
error: expression failed to parse:
error: <user expression 0>:1:6: no type named 'Foo' in namespace 'A::B'
::B::Foo f
~~~~~^
```
This is because the `SymbolFileDWARF::FindNamespace` implementation
will return *any* namespace it finds if the `parent_decl_ctx` provided
is empty. In `FindExternalVisibleDecls` we use this API to find the
namespace that symbol `B` refers to. If `A::B` happened to be the one
that `SymbolFileDWARF::FindNamespace` looked at first, we would try
to find `struct Foo` in `A::B`. Hence the error.
This patch proposes a new `SymbolFileDWARF::FindNamespace` API that
will only find a match for top-level namespaces, which is what
`FindExternalVisibleDecls` is attempting anyway; it just never
accounted for multiple namespaces of the same name.
**Testing**
* Added API test-case
Differential Revision: https://reviews.llvm.org/D147436
This patch allows users to evaluate expressions using
`expr -l c++20`. Currently DWARF keeps the CU's at
`DW_AT_language` at `DW_LANG_C_plus_plus_14` even
when compiling with `-std=c++20`. So even in "C++20
programs" expression evaluation will by default be
performed in `C++11` mode for now.
Enabling `C++14` has been previously attempted at
https://reviews.llvm.org/D80308
There are some remaining issues around evaluating C++20
expressions. Mainly, lack of support for C++20 AST nodes in
`clang::ASTImporter`. But these can be addressed in follow-up
patches.
This patch adds support for creating modules from JSON object files.
This is necessary for the crashlog use case where we don't have either a
module or a symbol file. In that case the ObjectFileJSON serves as both.
The patch adds support for an object file type (i.e. executable, shared
library, etc). It also adds the ability to specify sections, which is
necessary in order specify symbols by address. Finally, this patch
improves error handling and fixes a bug where we wouldn't read more than
the initial 512 bytes in GetModuleSpecifications.
Differential revision: https://reviews.llvm.org/D148062
This change uses the information from target.xml sent by
the GDB stub to produce C types that we can use to print
register fields.
lldb-server *does not* produce this information yet. This will
only work with GDB stubs that do. gdbserver or qemu
are 2 I know of. Testing is added that uses a mocked lldb-server.
```
(lldb) register read cpsr x0 fpcr fpsr x1
cpsr = 0x60001000
= (N = 0, Z = 1, C = 1, V = 0, TCO = 0, DIT = 0, UAO = 0, PAN = 0, SS = 0, IL = 0, SSBS = 1, BTYPE = 0, D = 0, A = 0, I = 0, F = 0, nRW = 0, EL = 0, SP = 0)
```
Only "register read" will display fields, and only when
we are not printing a register block.
For example, cpsr is a 32 bit register. Using the target's scratch type
system we construct a type:
```
struct __attribute__((__packed__)) cpsr {
uint32_t N : 1;
uint32_t Z : 1;
...
uint32_t EL : 2;
uint32_t SP : 1;
};
```
If this register had unallocated bits in it, those would
have been filled in by RegisterFlags as anonymous fields.
A new option "SetChildPrintingDecider" is added so we
can disable printing those.
Important things about this type:
* It is packed so that sizeof(struct cpsr) == sizeof(the real register).
(this will hold for all flags types we create)
* Each field has the same storage type, which is the same as the type
of the raw register value. This prevents fields being spilt over
into more storage units, as is allowed by most ABIs.
* Each bitfield size matches that of its register field.
* The most significant field is first.
The last point is required because the most significant bit (MSB)
being on the left/top of a print out matches what you'd expect to
see in an architecture manual. In addition, having lldb print a
different field order on big/little endian hosts is not acceptable.
As a consequence, if the target is little endian we have to
reverse the order of the fields in the value. The value of each field
remains the same. For example 0b01 doesn't become 0b10, it just shifts
up or down.
This is needed because clang's type system assumes that for a struct
like the one above, the least significant bit (LSB) will be first
for a little endian target. We need the MSB to be first.
Finally, if lldb's host is a different endian to the target we have
to byte swap the host endian value to match the endian of the target's
typesystem.
| Host Endian | Target Endian | Field Order Swap | Byte Order Swap |
|-------------|---------------|------------------|-----------------|
| Little | Little | Yes | No |
| Big | Little | Yes | Yes |
| Little | Big | No | Yes |
| Big | Big | No | No |
Testing was done as follows:
* Little -> Little
* LE AArch64 native debug.
* Big -> Little
* s390x lldb running under QEMU, connected to LE AArch64 target.
* Little -> Big
* LE AArch64 lldb connected to QEMU's GDB stub, which is running
an s390x program.
* Big -> Big
* s390x lldb running under QEMU, connected to another QEMU's GDB
stub, which is running an s390x program.
As we are not allowed to link core code to plugins directly,
I have added a new plugin RegisterTypeBuilder. There is one implementation
of this, RegisterTypeBuilderClang, which uses TypeSystemClang to build
the CompilerType from the register fields.
Reviewed By: jasonmolenda
Differential Revision: https://reviews.llvm.org/D145580
Have debugserver parse the watchpoint flags out of the exception
syndrome register when we get a watchpoint mach exception. Relay
those fields up to lldb in the stop reply packet, if the watchpoint
number was reported by the hardware, use the address from that as
the watchpoint address.
Change how watchpoints are reported to lldb from using the mach
exception data, to using the `reason:watchpoint` and `description:asciihex`
method that lldb-server uses, which can relay the actual trap address
as well as the address of a watched memory region responsible for
the trap, so lldb can step past it.
Have debugserver look for the nearest watchpoint that it has set
when it gets a watchpoint trap, so accesses that are reported as
starting before the watched region are associated with the correct
watchpoint to lldb. Add a test case for this specific issue.
Differential Revision: https://reviews.llvm.org/D147820
rdar://83996471
With ptrace_scope = 1 the kernel only allows tracing descendants of a
process. When using runInTerminal, the target process is not launched
by the debugger, so we need to modify LaunchRunInTerminal to explicitly
allow tracing. This should fix a problem reported in
https://reviews.llvm.org/D84974#3903716
In order to allow only the main lldb-vscode process to attach to the
target, this change introduces a new `--debugger-pid` flag that needs
to be passed with `--launch-target` and `--comm-file`.
Also, remove a special case from the launch method in the
lldbvscode_testcase test harness. The existing test was using
stopOnEntry, so the first stop didn't happen at the expected breakpoint
unless the harness did configurationDone first.
Differential Revision: https://reviews.llvm.org/D147805
With this patch, whenever we emit a `DW_AT_type` for some declaration
and the type is a template class with a `clang::PreferredNameAttr`, we
will emit the typedef that the attribute refers to instead. I.e.,
```
0x123 DW_TAG_variable
DW_AT_name "var"
DW_AT_type (0x123 "basic_string<char>")
0x124 DW_TAG_structure_type
DW_AT_name "basic_string<char>"
```
...becomes
```
0x123 DW_TAG_variable
DW_AT_name "var"
DW_AT_type (0x124 "std::string")
0x124 DW_TAG_structure_type
DW_AT_name "basic_string<char>"
0x125 DW_TAG_typedef
DW_AT_name "std::string"
DW_AT_type (0x124 "basic_string<char>")
```
We do this by returning the preferred name typedef `DIType` when
we create a structure definition. In some cases, e.g., with `-gmodules`,
we don't complete the structure definition immediately but do so later
via `completeClassData`, which overwrites the `TypeCache`. In such cases
we don't actually want to rewrite the cache with the preferred name. We
handle this by returning both the definition and the preferred typedef
from `CreateTypeDefinition` and let the callee decide what to do with
it.
Essentially we set up the types as:
```
TypeCache[Record] => DICompositeType
ReplaceMap[Record] => DIDerivedType(baseType: DICompositeType)
```
For now we keep this behind LLDB tuning.
**Testing**
- Added clang unit-test
- `check-llvm`, `check-clang` pass
- Confirmed that this change correctly repoints
`basic_string` references in some of my test programs.
- Will add follow-up LLDB API tests
Differential Revision: https://reviews.llvm.org/D145803
The name `module.modulemap` is convention.
> Clang will also search for a file named `module.map`. This behavior is deprecated and
> we plan to eventually remove it.
Currently, SBTarget::SetModuleLoadAddress does not accept large slides
needed to load images in high memory. This function should always have
taken an unsigned as the slide, as it immediately passes it to
Target::SetSectionLoadAddress which takes an unsigned.
This patch adds an overload and exposes that to SWIG instead of the
signed variant. I've marked the signed variant as deprecated and added
check that the slide is positive.
rdar://101355155
Differential revision: https://reviews.llvm.org/D147482
We were checking "WasTheLastResumeForUserExpression" but that returns true even
if that expression was completed, provided we haven't run again. This uses a
better check.
This is actually fairly hard to trigger. It happens the first time you hit an
objc_exception_throw breakpoint and invoke that frame recognizer for that. But
I couldn't trigger it using a Python based frame recognizer. So I wrote a test
for the objc_exception_throw_breakpoint recognizer which should have been there
anyway... It fails (the target auto-continues) w/o this patch and succeeds with
it.
Differential Revision: https://reviews.llvm.org/D147587
Step over thread plans were claiming to explain the fork stop reasons,
which prevented the default fork logic (detaching from the child
process) from kicking in. This patch changes that.
Differential Revision: https://reviews.llvm.org/D141605