This reverts commit bbc2976868.
This change seems to be at odds with the non-owning part semantics of
MlirOperation in C API. Since downstream clients can only take and
return MlirOperation, it does not sound correct to force all returns of
MlirOperation transfer ownership. Specifically, this makes it impossible
for downstreams to implement IR-traversing functions that, e.g., look at
neighbors of an operation.
The following patch triggers the exception, and there does not seem to
be an alternative way for a downstream binding writer to express this:
```
diff --git a/mlir/lib/Bindings/Python/IRCore.cpp b/mlir/lib/Bindings/Python/IRCore.cpp
index 39757dfad5be..2ce640674245 100644
--- a/mlir/lib/Bindings/Python/IRCore.cpp
+++ b/mlir/lib/Bindings/Python/IRCore.cpp
@@ -3071,6 +3071,11 @@ void mlir::python::populateIRCore(py::module &m) {
py::arg("successors") = py::none(), py::arg("regions") = 0,
py::arg("loc") = py::none(), py::arg("ip") = py::none(),
py::arg("infer_type") = false, kOperationCreateDocstring)
+ .def("_get_first_in_block", [](PyOperation &self) -> MlirOperation {
+ MlirBlock block = mlirOperationGetBlock(self.get());
+ MlirOperation first = mlirBlockGetFirstOperation(block);
+ return first;
+ })
.def_static(
"parse",
[](const std::string &sourceStr, const std::string &sourceName,
diff --git a/mlir/test/python/ir/operation.py b/mlir/test/python/ir/operation.py
index f59b1a26ba48..6b12b8da5c24 100644
--- a/mlir/test/python/ir/operation.py
+++ b/mlir/test/python/ir/operation.py
@@ -24,6 +24,25 @@ def expect_index_error(callback):
except IndexError:
pass
+@run
+def testCustomBind():
+ ctx = Context()
+ ctx.allow_unregistered_dialects = True
+ module = Module.parse(
+ r"""
+ func.func @f1(%arg0: i32) -> i32 {
+ %1 = "custom.addi"(%arg0, %arg0) : (i32, i32) -> i32
+ return %1 : i32
+ }
+ """,
+ ctx,
+ )
+ add = module.body.operations[0].regions[0].blocks[0].operations[0]
+ op = add.operation
+ # This will get a reference to itself.
+ f1 = op._get_first_in_block()
+
+
# Verify iterator based traversal of the op/region/block hierarchy.
# CHECK-LABEL: TEST: testTraverseOpRegionBlockIterators
```
This fixes a longstanding bug in the `Context._CAPICreate` method
whereby it was not taking ownership of the PyMlirContext wrapper when
casting to a Python object. The result was minimally that all such
contexts transferred in that way would leak. In addition, counter to the
documentation for the `_CAPICreate` helper (see
`mlir-c/Bindings/Python/Interop.h`) and the `forContext` /
`forOperation` methods, we were silently upgrading any unknown
context/operation pointer to steal-ownership semantics. This is
dangerous and was causing some subtle bugs downstream where this
facility is getting the most use.
This patch corrects the semantics and will only do an ownership transfer
for `_CAPICreate`, and it will further require that it is an ownership
transfer (if already transferred, it was just silently succeeding).
Removing the mis-aligned behavior made it clear where the downstream was
doing the wrong thing.
It also adds some `_testing_` functions to create unowned context and
operation capsules so that this can be fully tested upstream, reworking
the tests to verify the behavior.
In some torture testing downstream, I was not able to trigger any memory
corruption with the newly enforced semantics. When getting it wrong, a
regular exception is raised.
This adds Python abstractions for the different handle types of the
transform dialect
The abstractions allow for straightforward chaining of transforms by
calling their member functions.
As an initial PR for this infrastructure, only a single transform is
included: `transform.structured.match`.
With a future `tile` transform abstraction an example of the usage is:
```Python
def script(module: OpHandle):
module.match_ops(MatchInterfaceEnum.TilingInterface).tile(tile_sizes=[32,32])
```
to generate the following IR:
```mlir
%0 = transform.structured.match interface{TilingInterface} in %arg0
%tiled_op, %loops = transform.structured.tile_using_for %0 [32, 32]
```
These abstractions are intended to enhance the usability and flexibility
of the transform dialect by providing an accessible interface that
allows for easy assembly of complex transformation chains.
The "Dim" prefix is a legacy left-over that no longer makes sense, since
we have a very strict "Dimension" vs. "Level" definition for sparse
tensor types and their storage.
This reverts commit 0d109035c2.
Changes make Python bindings unbuildable without additional cmake
modifications (or modified `$PATH`).
```
/llvm-project/mlir/lib/Bindings/Python/IRCore.cpp:33:10: fatal error: 'funcobject.h' file not found
```
This header is provided by cpython, and we are not looking for that in
cmake.
Moreover, the nature of this change is not very clear to me. Seems to
replace one include with two dozens, presumably because the code is only
using transitively included headers, but the value for readability is
dubious. LLVM is also not strictly following IWYU.
Enables reusing the AsmState when printing from Python. Also moves the
fileObject and binary to the end (pybind11::object was resulting in the
overload not working unless `state=` was specified).
---------
Co-authored-by: Maksim Levental <maksim.levental@gmail.com>
The existing initialization sequence always enables multi-threading at
MLIRContext construction time, making it impractical to provide a
customized thread pool.
Here, this is changed to always create the context with threading
disabled, process all site-specific init hooks (which can set thread
pools) and ultimately enable multi-threading unless if site-configured
to not do so.
This should preserve the existing user-visible initialization behavior
while also letting downstreams ensure that contexts are always created
with a shared thread pool. This was tested with IREE, which has such a
concept. Using site-specific thread tuning produced up to 2x single
compilation job behavior and customization of batch compilation (i.e. as
part of a build system) to utilize half the memory and run the entire
test suite ~2x faster. Given this, I believe that the additional
configurability can well pay for itself for implementations that use it.
We may also want to present user-level Python APIs for controlling
threading configuration in the future.
This PR adds "value casting", i.e., a mechanism to wrap `ir.Value` in a
proxy class that overloads dunders such as `__add__`, `__sub__`, and
`__mul__` for fun and great profit.
This is thematically similar to
bfb1ba7526
and
9566ee2806.
The example in the test demonstrates the value of the feature (no pun
intended):
```python
@register_value_caster(F16Type.static_typeid)
@register_value_caster(F32Type.static_typeid)
@register_value_caster(F64Type.static_typeid)
@register_value_caster(IntegerType.static_typeid)
class ArithValue(Value):
__add__ = partialmethod(_binary_op, op="add")
__sub__ = partialmethod(_binary_op, op="sub")
__mul__ = partialmethod(_binary_op, op="mul")
a = arith.constant(value=FloatAttr.get(f16_t, 42.42))
b = a + a
# CHECK: ArithValue(%0 = arith.addf %cst, %cst : f16)
print(b)
a = arith.constant(value=FloatAttr.get(f32_t, 42.42))
b = a - a
# CHECK: ArithValue(%1 = arith.subf %cst_0, %cst_0 : f32)
print(b)
a = arith.constant(value=FloatAttr.get(f64_t, 42.42))
b = a * a
# CHECK: ArithValue(%2 = arith.mulf %cst_1, %cst_1 : f64)
print(b)
```
**EDIT**: this now goes through the bindings and thus supports automatic
casting of `OpResult` (including as an element of `OpResultList`),
`BlockArgument` (including as an element of `BlockArgumentList`), as
well as `Value`.
The scalable dimension functionality was added to the vector type after
the bindings for it were defined, without the bindings being ever
updated. Fix that.
<img
src="https://github.com/llvm/llvm-project/assets/5657668/443852b6-ac25-45bb-a38b-5dfbda09d5a7"
height="400" />
<p></p>
So turns out that none of the `replace=True` things actually work
because of the map caches (except for
`register_attribute_builder(replace=True)`, which doesn't use such a
cache). This was hidden by a series of unfortunate events:
1. `register_type_caster` failure was hidden because it was the same
`TestIntegerRankedTensorType` being replaced with itself (d'oh).
2. `register_operation` failure was hidden behind the "order of events"
in the lifecycle of typical extension import/use. Since extensions are
loaded/registered almost immediately after generated builders are
registered, there is no opportunity for the `operationClassMapCache` to
be populated (through e.g., `module.body.operations[2]` or
`module.body.operations[2].opview` or something). Of course as soon as
you as actually do "late-bind/late-register" the extension, you see it's
not successfully replacing the stale one in `operationClassMapCache`.
I'll take this opportunity to propose we ditch the caches all together.
I've been cargo-culting them but I really don't understand how they
work. There's this comment above `operationClassMapCache`
```cpp
/// Cache of operation name to external operation class object. This is
/// maintained on lookup as a shadow of operationClassMap in order for repeat
/// lookups of the classes to only incur the cost of one hashtable lookup.
llvm::StringMap<pybind11::object> operationClassMapCache;
```
But I don't understand how that's true given that the canonical thing
`operationClassMap` is already a map:
```cpp
/// Map of full operation name to external operation class object.
llvm::StringMap<pybind11::object> operationClassMap;
```
Maybe it wasn't always the case? Anyway things work now but it seems
like an unnecessary layer of complexity for not much gain? But maybe I'm
wrong.
Added missing register_translations in python to replicate the same in
the C-API
Cleaned up the current calls to register passes where the other calls
are already embedded in the mlirRegisterAllPasses.
found here,
https://discourse.llvm.org/t/opencl-example/74187
`PyOperations` are Python-level handles to `Operation *` instances. When
the latter are modified by C++, the former need to be invalidated.
#69746 implements such invalidation mechanism by setting all
`PyReferences` to `invalid`. However, that is not enough: they also need
to be removed from the `liveOperations` map since other parts of the
code (such as `PyOperation::createDetached`) assume that that map only
contains valid refs.
This is required to actually solve the issue in #69730.
Fixes https://github.com/llvm/llvm-project/issues/69730 (also see
https://reviews.llvm.org/D155543).
There are two things outstanding (why I didn't land before):
1. add some C API tests for `mlirOperationWalk`;
2. potentially refactor how the invalidation in `run` works; the first
version of the code looked like this:
```cpp
if (invalidateOps) {
auto *context = op.getOperation().getContext().get();
MlirOperationWalkCallback invalidatingCallback =
[](MlirOperation op, void *userData) {
PyMlirContext *context =
static_cast<PyMlirContext *>(userData);
context->setOperationInvalid(op);
};
auto numRegions =
mlirOperationGetNumRegions(op.getOperation().get());
for (int i = 0; i < numRegions; ++i) {
MlirRegion region =
mlirOperationGetRegion(op.getOperation().get(), i);
for (MlirBlock block = mlirRegionGetFirstBlock(region);
!mlirBlockIsNull(block);
block = mlirBlockGetNextInRegion(block))
for (MlirOperation childOp =
mlirBlockGetFirstOperation(block);
!mlirOperationIsNull(childOp);
childOp = mlirOperationGetNextInBlock(childOp))
mlirOperationWalk(childOp, invalidatingCallback, context,
MlirWalkPostOrder);
}
}
```
This is verbose and ugly but it has the important benefit of not
executing `mlirOperationEqual(rootOp->get(), op)` for every op
underneath the root op.
Supposing there's no desire for the slightly more efficient but highly
convoluted approach, I can land this "posthaste".
But, since we have eyes on this now, any suggestions or approaches (or
needs/concerns) are welcome.
This PR replaces the mixin `OpView` extension mechanism with the
standard inheritance mechanism.
Why? Firstly, mixins are not very pythonic (inheritance is usually used
for this), a little convoluted, and too "tight" (can only be used in the
immediately adjacent `_ext.py`). Secondly, it (mixins) are now blocking
are correct implementation of "value builders" (see
[here](https://github.com/llvm/llvm-project/pull/68764)) where the
problem becomes how to choose the correct base class that the value
builder should call.
This PR looks big/complicated but appearances are deceiving; 4 things
were needed to make this work:
1. Drop `skipDefaultBuilders` in
`OpPythonBindingGen::emitDefaultOpBuilders`
2. Former mixin extension classes are converted to inherit from the
generated `OpView` instead of being "mixins"
a. extension classes that simply were calling into an already generated
`super().__init__` continue to do so
b. (almost all) extension classes that were calling `self.build_generic`
because of a lack of default builder being generated can now also just
call `super().__init__`
3. To handle the [lone single
use-case](https://sourcegraph.com/search?q=context%3Aglobal+select_opview_mixin&patternType=standard&sm=1&groupBy=repo)
of `select_opview_mixin`, namely
[linalg](https://github.com/llvm/llvm-project/blob/main/mlir/python/mlir/dialects/_linalg_ops_ext.py#L38),
only a small change was necessary in `opdsl/lang/emitter.py` (thanks to
the emission/generation of default builders/`__init__`s)
4. since the `extend_opview_class` decorator is removed, we need a way
to register extension classes as the desired `OpView` that `op.opview`
conjures into existence; so we do the standard thing and just enable
replacing the existing registered `OpView` i.e.,
`register_operation(_Dialect, replace=True)`.
Note, the upgrade path for the common case is to change an extension to
inherit from the generated builder and decorate it with
`register_operation(_Dialect, replace=True)`. In the slightly more
complicated case where `super().__init(self.build_generic(...))` is
called in the extension's `__init__`, this needs to be updated to call
`__init__` in `OpView`, i.e., the grandparent (see updated docs).
Note, also `<DIALECT>_ext.py` files/modules will no longer be automatically loaded.
Note, the PR has 3 base commits that look funny but this was done for
the purpose of tracking the line history of moving the
`<DIALECT>_ops_ext.py` class into `<DIALECT>.py` and updating (commit
labeled "fix").
The reason I want this is that I am writing my own Python bindings and
would like to use the insertion point from
`PyThreadContextEntry::getDefaultInsertionPoint()` to call C++ functions
that take an `OpBuilder` (I don't need to expose it in Python but it
also seems appropriate). AFAICT, there is currently no way to translate
a `PyInsertionPoint` into an `OpBuilder` because the operation is
inaccessible.
Updates:
1. Infer lvlToDim from dimToLvl
2. Add more tests for block sparsity
3. Finish TODOs related to lvlToDim, including adding lvlToDim to python
binding
Verification of lvlToDim that user provides will be implemented in the
next PR.
Note the new surface syntax allows for defining a dimToLvl and lvlToDim
map at once (where usually the latter can be inferred from the former,
but not always). This revision adds storage for the latter, together
with some intial boilerplate. The actual support (inference, validation,
printing, etc.) is still TBD of course.
This does basic plumbing, ideally want a context approach to reduce
needing to thread these manually, but the current is useful even in that
state.
Made Value.get_name change backwards compatible, so one could either set
a field or create a state to pass in.
* Moves several orphaned methods from Operation/OpView -> _OperationBase
so that both hierarchies share them (whether unknown or known to ODS).
* Adds typing information for missing `MLIRError` exception.
* Adds `DiagnosticInfo` typing.
* Adds `DenseResourceElementsAttr` typing that was missing.
Enable usage where capturing AsmState is good (e.g., avoiding creating AsmState over and over again when walking IR and printing).
This also only changes one C API to verify plumbing. But using the AsmState makes the cost more explicit than the flags interface (which hides the traversals and construction here) and also enables a more efficient usage C side.
Only construction and type casting are implemented. The method to create
is explicitly named "unsafe" and the documentation calls out what the
caller is responsible for. There really isn't a better way to do this
and retain the power-user feature this represents.
This reverts a feature introduced in commit
2a5d497494. The goal of that commit was to
allow `StringAttr`s to by used transparently wherever Python `str`s are
expected. But, as the tests in https://reviews.llvm.org/D159182 reveal,
pybind11 doesn't do this conversion based on `__str__` automatically,
unlike for the other types introduced in the commit above. At the same
time, changing `__str__` breaks the symmetry with other attributes of
`print(attr)` printing the assembly of the attribute, so the change
probably has more disadvantages than advantages.
Reviewed By: springerm, rkayaith
Differential Revision: https://reviews.llvm.org/D159255
This allows to use Python's `bool(.)`, `float(.)`, `int(.)`, and
`str(.)` to convert pybound attributes to the corresponding native
Python types. In particular, pybind11 uses these functions to
automatically cast objects to the corresponding primitive types wherever
they are required by pybound functions, e.g., arguments are converted to
Python's `int` if the C++ signature requires a C++ `int`. With this
patch, pybound attributes can by used wherever the corresponding native
types are expected. New tests show-case this behavior in the
constructors of `Dense*ArrayAttr`.
Note that this changes the output of Python's `str` on `StringAttr` from
`"hello"` to `hello`. Arguably, this is still in line with `str`s goal
of producing a readable interpretation of the value, even if it is now
not unambiously a string anymore (`print(ir.Attribute.parse('"42"'))`
now outputs `42`). However, this is consistent with instances of
Python's `str` (`print("42")` outputs `42`), and `repr` still provides
an unambigous representation if one is required.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D158974
This patch makes the getter function of `DenseBoolArrayAttr` work more
intuitively. Until now, it was implemented with a `std::vector<int>`
argument, which works in the typical situation where you call the pybind
function with a list of Python bools (like `[True, False]`). However, it
does *not* work if the elements of the list have to be cast to Bool
before (and that is the default behavior for lists of all other types).
The patch thus changes the signature to `std::vector<bool>`, which helps
pybind to make the function behave as expected for bools. The tests now
also contain a case where such a cast is happening. This also makes the
conversion of `DenseBoolArrayAttr` back to Python more intuitive:
instead of converting to `0` and `1`, the elements are now converted to
`False` and `True`.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D158973
This PR implements python enum bindings for *all* the enums - this includes `I*Attrs` (including positional/bit) and `Dialect/EnumAttr`.
There are a few parts to this:
1. CMake: a small addition to `declare_mlir_dialect_python_bindings` and `declare_mlir_dialect_extension_python_bindings` to generate the enum, a boolean arg `GEN_ENUM_BINDINGS` to make it opt-in (even though it works for basically all of the dialects), and an optional `GEN_ENUM_BINDINGS_TD_FILE` for handling corner cases.
2. EnumPythonBindingGen.cpp: there are two weedy aspects here that took investigation:
1. If an enum attribute is not a `Dialect/EnumAttr` then the `EnumAttrInfo` record is canonical, as far as both the cases of the enum **and the `AttrDefName`**. On the otherhand, if an enum is a `Dialect/EnumAttr` then the `EnumAttr` record has the correct `AttrDefName` ("load bearing", i.e., populates `ods.ir.AttributeBuilder('<NAME>')`) but its `enum` field contains the cases, which is an instance of `EnumAttrInfo`. The solution is to generate an one enum class for both `Dialect/EnumAttr` and "independent" `EnumAttrInfo` but to make that class interopable with two builder registrations that both do the right thing (see next sub-bullet).
2. Because we don't have a good connection to cpp `EnumAttr`, i.e., only the `enum class` getters are exposed (like `DimensionAttr::get(Dimension value)`), we have to resort to parsing e.g., `Attribute.parse(f'#gpu<dim {x}>')`. This means that the set of supported `assemblyFormat`s (for the enum) is fixed at compile of MLIR (currently 2, the only 2 I saw). There might be some things that could be done here but they would require quite a bit more C API work to support generically (e.g., casting ints to enum cases and binding all the getters or going generically through the `symbolize*` methods, like `symbolizeDimension(uint32_t)` or `symbolizeDimension(StringRef)`).
A few small changes:
1. In addition, since this patch registers default builders for attributes where people might've had their own builders already written, I added a `replace` param to `AttributeBuilder.insert` (`False` by default).
2. `makePythonEnumCaseName` can't handle all the different ways in which people write their enum cases, e.g., `llvm.CConv.Intel_OCL_BI`, which gets turned into `INTEL_O_C_L_B_I` (because `llvm::convertToSnakeFromCamelCase` doesn't look for runs of caps). So I dropped it. On the otherhand regularization does need to done because some enums have `None` as a case (and others might have other python keywords).
3. I turned on `llvm` dialect generation here in order to test `nvvm.WGMMAScaleIn`, which is an enum with [[ d7e26b5620/mlir/include/mlir/IR/EnumAttr.td (L22-L25) | no explicit discriminator ]] for the `neg` case.
Note, dialects that didn't get a `GEN_ENUM_BINDINGS` don't have any enums to generate.
Let me know if I should add more tests (the three trivial ones I added exercise both the supported `assemblyFormat`s and `replace=True`).
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D157934
This patch adds the MLIR C bindings and the corresponding Python bindings of the AnyValueType of the transform dialect.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D157638
This renaming started with the native ODS support for properties, this is completing it.
A mass automated textual rename seems safe for most codebases.
Drop also the ods prefix to keep the accessors the same as they were before
this change:
properties.odsOperandSegmentSizes
reverts back to:
properties.operandSegementSizes
The ODS prefix was creating divergence between all the places and make it harder to
be consistent.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D157173
This reduces code generated for type inference and instead reuses
facilities CAPI side that performed same role.
Differential Revision: https://reviews.llvm.org/D156041t
Not every NumPy type (e.g., the `ml_dtypes.bfloat16` NumPy extension
type) has a type in the Python buffer protocol, so exporting such a
buffer with `PyBUF_FORMAT` may fail.
However, we don't care about the self-reported type of a buffer if the
user provides an explicit type. In the case that an explicit type is
provided, don't request the format from the buffer protocol, which
allows arrays whose element types are unknown to the buffer protocol to
be passed.
Reviewed By: jpienaar, ftynse
Differential Revision: https://reviews.llvm.org/D155209