This patch relands https://github.com/llvm/llvm-project/pull/71004 which
was reverted because the clang change it depends on was reverted.
In addition to the original patch, this PR includes a change to
`SymbolFileDWARF::ParseVariableDIE` to support CU-level variable
definitions that don't have locations, but represent a constant value.
Previously, when debug-maps were available, we would assume that a
variable with "static lifetime" (which in this case means "has a linkage
name") has a valid address, which isn't the case for non-locationed
constants. We could omit this additional change if we stopped attaching
linkage names to global non-locationed constants.
Original commit message:
"""
https://github.com/llvm/llvm-project/pull/71780 proposes moving the
`DW_AT_const_value` on inline static members from the declaration DIE to
the definition DIE. This patch makes sure the LLDB's expression
evaluator can continue to support static initialisers even if the
declaration doesn't have a `DW_AT_const_value` anymore.
Previously the expression evaluator would find the constant for a
VarDecl from its declaration `DW_TAG_member` DIE. In cases where the
initialiser was specified out-of-class, LLDB could find it during symbol
resolution.
However, neither of those will work for constants, since we don't have a
constant attribute on the declaration anymore and we don't have
constants in the symbol table.
"""
Depends on:
* https://github.com/llvm/llvm-project/pull/71780
This patch relands https://github.com/llvm/llvm-project/pull/70639
It was reverted because under certain conditions we triggered an
assertion
in `DIBuilder`. Specifically, in the original patch we called
`EmitGlobalVariable`
at the end of `CGDebugInfo::finalize`, after all the temporary `DIType`s
have
been uniqued. With limited debug-info such temporary nodes would be
created
more frequently, leaving us with non-uniqued nodes by the time we got to
`DIBuilder::finalize`; this violated its pre-condition and caused
assertions to trigger.
To fix this, the latest iteration of the patch moves
`EmitGlobalVariable` to the
beginning of `CGDebugInfo::finalize`. Now, when we create a temporary
`DIType` node as a result of emitting a variable definition, it will get
uniqued
in time. A test-case was added for this scenario.
We also now don't emit a linkage name for non-locationed constants since
LLDB doesn't make use of it anyway.
Original commit message:
"""
When an LLDB user asks for the value of a static data member, LLDB
starts
by searching the Names accelerator table for the corresponding variable
definition DIE. For static data members with out-of-class definitions
that
works fine, because those get represented as global variables with a
location
and making them eligible to be added to the Names table. However,
in-class
definitions won’t get indexed because we usually don't emit global
variables
for them. So in DWARF we end up with a single `DW_TAG_member` that
usually holds the constant initializer. But we don't get a corresponding
CU-level `DW_TAG_variable` like we do for out-of-class definitions.
To make it more convenient for debuggers to get to the value of inline
static data
members, this patch makes sure we emit definitions for static variables
with
constant initializers the same way we do for other static variables.
This also aligns
Clang closer to GCC, which produces CU-level definitions for inline
statics and also
emits these into `.debug_pubnames`.
The implementation keeps track of newly created static data members.
Then in `CGDebugInfo::finalize`, we emit a global `DW_TAG_variable` with
a
`DW_AT_const_value` for any of those declarations that didn't end up
with a
definition in the `DeclCache`.
The newly emitted `DW_TAG_variable` will look as follows:
```
0x0000007b: DW_TAG_structure_type
DW_AT_calling_convention (DW_CC_pass_by_value)
DW_AT_name ("Foo")
...
0x0000008d: DW_TAG_member
DW_AT_name ("i")
DW_AT_type (0x00000062 "const int")
DW_AT_external (true)
DW_AT_declaration (true)
DW_AT_const_value (4)
Newly added
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
0x0000009a: DW_TAG_variable
DW_AT_specification (0x0000008d "i")
DW_AT_const_value (4)
DW_AT_linkage_name ("_ZN2t2IiE1iIfEE")
```
This patch also drops the `DW_AT_const_value` off of the declaration
since we
now always have it on the definition. This ensures that the
`DWARFParallelLinker`
can type-merge class with static members where we couldn't attach the
constant
on the declaration in some CUs.
"""
Dependent changes:
* https://github.com/llvm/llvm-project/pull/71800
This casued asserts:
llvm/lib/IR/Metadata.cpp:689:
void llvm::MDNode::resolve(): Assertion `isUniqued() && "Expected this to be uniqued"' failed.
See comments on the PR.
This also reverts the dependent follow-up commits, see below.
> When an LLDB user asks for the value of a static data member, LLDB
> starts by searching the Names accelerator table for the corresponding
> variable definition DIE. For static data members with out-of-class
> definitions that works fine, because those get represented as global
> variables with a location and making them eligible to be added to the
> Names table. However, in-class definitions won<E2><80><99>t get indexed because
> we usually don't emit global variables for them. So in DWARF we end
> up with a single `DW_TAG_member` that usually holds the constant
> initializer. But we don't get a corresponding CU-level
> `DW_TAG_variable` like we do for out-of-class definitions.
>
> To make it more convenient for debuggers to get to the value of
> inline static data members, this patch makes sure we emit definitions
> for static variables with constant initializers the same way we do
> for other static variables. This also aligns Clang closer to GCC,
> which produces CU-level definitions for inline statics and also
> emits these into `.debug_pubnames`.
>
> The implementation keeps track of newly created static data members.
> Then in `CGDebugInfo::finalize`, we emit a global `DW_TAG_variable`
> with a `DW_AT_const_value` for any of those declarations that didn't
> end up with a definition in the `DeclCache`.
>
> The newly emitted `DW_TAG_variable` will look as follows:
> ```
> 0x0000007b: DW_TAG_structure_type
> DW_AT_calling_convention (DW_CC_pass_by_value)
> DW_AT_name ("Foo")
> ...
>
> 0x0000008d: DW_TAG_member
> DW_AT_name ("i")
> DW_AT_type (0x00000062 "const int")
> DW_AT_external (true)
> DW_AT_declaration (true)
> DW_AT_const_value (4)
>
> Newly added
> vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
>
> 0x0000009a: DW_TAG_variable
> DW_AT_specification (0x0000008d "i")
> DW_AT_const_value (4)
> DW_AT_linkage_name ("_ZN2t2IiE1iIfEE")
> ```
>
> This patch also drops the `DW_AT_const_value` off of the declaration
> since we now always have it on the definition. This ensures that the
> `DWARFParallelLinker` can type-merge class with static members where
> we couldn't attach the constant on the declaration in some CUs.
This reverts commit 7c3707aea8.
This reverts commit cab0a19467.
This reverts commit 317481b3c8.
This reverts commit 15fc809404.
This reverts commit 470de2bbec.
https://github.com/llvm/llvm-project/pull/70639 proposes moving the
`DW_AT_const_value` on inline static members from the declaration DIE to
the definition DIE. This patch makes sure the LLDB's expression
evaluator can continue to support static initialisers even if the
declaration doesn't have a `DW_AT_const_value` anymore.
Previously the expression evaluator would find the constant for a
VarDecl from its declaration `DW_TAG_member` DIE. In cases where the
initialiser was specified out-of-class, LLDB could find it during symbol
resolution.
However, neither of those will work for constants, since we don't have a
constant attribute on the declaration anymore and we don't have
constants in the symbol table.
**Testing**
* If https://github.com/llvm/llvm-project/pull/70639 were to land
without this patch then most of the `TestConstStaticIntegralMember.py`
would start failing
When an LLDB user asks for the value of a static data member, LLDB
starts by searching the Names accelerator table for the corresponding
variable definition DIE. For static data members with out-of-class
definitions that works fine, because those get represented as global
variables with a location and making them eligible to be added to the
Names table. However, in-class definitions won’t get indexed because
we usually don't emit global variables for them. So in DWARF we end
up with a single `DW_TAG_member` that usually holds the constant
initializer. But we don't get a corresponding CU-level
`DW_TAG_variable` like we do for out-of-class definitions.
To make it more convenient for debuggers to get to the value of
inline static data members, this patch makes sure we emit definitions
for static variables with constant initializers the same way we do
for other static variables. This also aligns Clang closer to GCC,
which produces CU-level definitions for inline statics and also
emits these into `.debug_pubnames`.
The implementation keeps track of newly created static data members.
Then in `CGDebugInfo::finalize`, we emit a global `DW_TAG_variable`
with a `DW_AT_const_value` for any of those declarations that didn't
end up with a definition in the `DeclCache`.
The newly emitted `DW_TAG_variable` will look as follows:
```
0x0000007b: DW_TAG_structure_type
DW_AT_calling_convention (DW_CC_pass_by_value)
DW_AT_name ("Foo")
...
0x0000008d: DW_TAG_member
DW_AT_name ("i")
DW_AT_type (0x00000062 "const int")
DW_AT_external (true)
DW_AT_declaration (true)
DW_AT_const_value (4)
Newly added
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
0x0000009a: DW_TAG_variable
DW_AT_specification (0x0000008d "i")
DW_AT_const_value (4)
DW_AT_linkage_name ("_ZN2t2IiE1iIfEE")
```
This patch also drops the `DW_AT_const_value` off of the declaration
since we now always have it on the definition. This ensures that the
`DWARFParallelLinker` can type-merge class with static members where
we couldn't attach the constant on the declaration in some CUs.
This reverts commit 4909814c08.
Following LLDB patch had to be reverted due to Linux test failures:
```
ef3febadf6
```
Since without that LLDB patch the LLDB tests would fail, revert
this clang patch for now.
This reverts commit ef3febadf6.
This caused an LLDB test failure on Linux for `lang/cpp/symbols/TestSymbols.test_dwo`:
```
make: Leaving directory '/home/worker/2.0.1/lldb-x86_64-debian/build/lldb-test-build.noindex/lang/cpp/symbols/TestSymbols.test_dwo'
runCmd: expression -- D::i
PLEASE submit a bug report to https://github.com/llvm/llvm-project/issues/ and include the crash backtrace.
Stack dump:
0. HandleCommand(command = "expression -- D::i")
1. <user expression 0>:1:4: current parser token 'i'
2. <lldb wrapper prefix>:44:1: parsing function body '$__lldb_expr'
3. <lldb wrapper prefix>:44:1: in compound statement ('{}')
Stack dump without symbol names (ensure you have llvm-symbolizer in your PATH or set the environment var `LLVM_SYMBOLIZER_PATH` to point to it):
0 _lldb.cpython-39-x86_64-linux-gnu.so 0x00007fbcfcb08b87
1 _lldb.cpython-39-x86_64-linux-gnu.so 0x00007fbcfcb067ae
2 _lldb.cpython-39-x86_64-linux-gnu.so 0x00007fbcfcb0923f
3 libpthread.so.0 0x00007fbd07ab7140
```
And a failure in `TestCallStdStringFunction.py` on Linux aarch64:
```
--
Exit Code: -11
Command Output (stdout):
--
lldb version 18.0.0git (https://github.com/llvm/llvm-project.git revision ef3febadf6)
clang revision ef3febadf6
llvm revision ef3febadf6
--
Command Output (stderr):
--
PLEASE submit a bug report to https://github.com/llvm/llvm-project/issues/ and include the crash backtrace.
Stack dump:
0. HandleCommand(command = "expression str")
1. <lldb wrapper prefix>:45:34: current parser token ';'
2. <lldb wrapper prefix>:44:1: parsing function body '$__lldb_expr'
3. <lldb wrapper prefix>:44:1: in compound statement ('{}')
#0 0x0000ffffb72a149c llvm::sys::PrintStackTrace(llvm::raw_ostream&, int) (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_[lldb.cpython-38-aarch64-linux-gnu.so](http://lldb.cpython-38-aarch64-linux-gnu.so/)+0x58c749c)
#1 0x0000ffffb729f458 llvm::sys::RunSignalHandlers() (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_[lldb.cpython-38-aarch64-linux-gnu.so](http://lldb.cpython-38-aarch64-linux-gnu.so/)+0x58c5458)
#2 0x0000ffffb72a1bd0 SignalHandler(int) (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_[lldb.cpython-38-aarch64-linux-gnu.so](http://lldb.cpython-38-aarch64-linux-gnu.so/)+0x58c7bd0)
#3 0x0000ffffbdd9e7dc (linux-vdso.so.1+0x7dc)
#4 0x0000ffffb71799d8 lldb_private::plugin::dwarf::SymbolFileDWARF::FindGlobalVariables(lldb_private::ConstString, lldb_private::CompilerDeclContext const&, unsigned int, lldb_private::VariableList&) (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_[lldb.cpython-38-aarch64-linux-gnu.so](http://lldb.cpython-38-aarch64-linux-gnu.so/)+0x579f9d8)
#5 0x0000ffffb7197508 DWARFASTParserClang::FindConstantOnVariableDefinition(lldb_private::plugin::dwarf::DWARFDIE) (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_[lldb.cpython-38-aarch64-linux-gnu.so](http://lldb.cpython-38-aarch64-linux-gnu.so/)+0x57bd508)
```
https://github.com/llvm/llvm-project/pull/70639 proposes moving the
`DW_AT_const_value` on inline static members from the declaration DIE to
the definition DIE. This patch makes sure the LLDB's expression
evaluator can continue to support static initialisers even if the
declaration doesn't have a `DW_AT_const_value` anymore.
Previously the expression evaluator would find the constant for a
VarDecl from its declaration `DW_TAG_member` DIE. In cases where the
initialiser was specified out-of-class, LLDB could find it during symbol
resolution.
However, neither of those will work for constants, since we don't have a
constant attribute on the declaration anymore and we don't have
constants in the symbol table.
**Testing**
* If https://github.com/llvm/llvm-project/pull/70639 were to land
without this patch then most of the `TestConstStaticIntegralMember.py`
would start failing
When an LLDB user asks for the value of a static data member, LLDB
starts by
searching the Names accelerator table for the corresponding variable
definition
DIE. For static data members with out-of-class definitions that works
fine,
because those get represented as global variables with a location and
making them
eligible to be added to the Names table. However, in-class definitions
won’t get
indexed because we usually don't emit global variables for them. So in
DWARF
we end up with a single `DW_TAG_member` that usually holds the constant
initializer.
But we don't get a corresponding CU-level `DW_TAG_variable` like we do
for
out-of-class definitions.
To make it more convenient for debuggers to get to the value of inline
static data members,
this patch makes sure we emit definitions for static variables with
constant initializers
the same way we do for other static variables. This also aligns Clang
closer to GCC, which
produces CU-level definitions for inline statics and also emits these
into `.debug_pubnames`.
The implementation keeps track of newly created static data members.
Then in
`CGDebugInfo::finalize`, we emit a global `DW_TAG_variable` with a
`DW_AT_const_value` for
any of those declarations that didn't end up with a definition in the
`DeclCache`.
The newly emitted `DW_TAG_variable` will look as follows:
```
0x0000007b: DW_TAG_structure_type
DW_AT_calling_convention (DW_CC_pass_by_value)
DW_AT_name ("Foo")
...
0x0000008d: DW_TAG_member
DW_AT_name ("i")
DW_AT_type (0x00000062 "const int")
DW_AT_external (true)
DW_AT_declaration (true)
DW_AT_const_value (4)
Newly added
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
0x0000009a: DW_TAG_variable
DW_AT_specification (0x0000008d "i")
DW_AT_const_value (4)
DW_AT_linkage_name ("_ZN2t2IiE1iIfEE")
```
This patch also drops the `DW_AT_const_value` off of the declaration since we now always have it on the definition. This ensures that the `DWARFParallelLinker` can type-merge class with static members where we couldn't attach the constant on the declaration in some CUs.
The `po` alias now matches the behavior of the `expression` command when
the it can apply a Fix-It to an expression.
Modifications
- Add has `m_fixed_expression` to the `CommandObjectDWIMPrint` class a
`protected` member that stores the post Fix-It expression, just like the
`CommandObjectExpression` class.
- Converted messages to present tense.
- Add test cases that confirms a Fix-It for a C++ expression for both
`po` and `expressions`
rdar://115317419
The `po` alias now matches the behavior of the `expression` command when
the it can apply a Fix-It to an expression.
Modifications
- Add has `m_fixed_expression` to the `CommandObjectDWIMPrint` class a
`protected` member that stores the post Fix-It expression, just like the
`CommandObjectExpression` class.
- Converted messages to present tense.
- Add test cases that confirms a Fix-It for a C++ expression for both
`po` and `expressions`
rdar://115317419
Co-authored-by: Pete Lawrence <plawrence@apple.com>
Split out the assertions that fail on Windows in preparation to
XFAILing them.
Drive-by change:
* Add a missing `self.build()` call in `test_union_in_anon_namespace`
* Fix formatting
* Add expectedFailureWindows decorator
**Background**
Prior to DWARFv4, there was no clear normative text on how to handle
static data members. Non-normative text suggested that compilers should
use `DW_AT_external` to mark static data members of structrues/unions.
Clang does this consistently. However, GCC doesn't, e.g., when the
structure/union is in an anonymous namespace (which is C++ standard
conformant). Additionally, GCC never emits `DW_AT_data_member_location`s
for union members (regardless of storage linkage and storage duration).
Since DWARFv5 (issue 161118.1), static data members get emitted as
`DW_TAG_variable`.
LLDB used to differentiate between static and non-static members by
checking the `DW_AT_external` flag and the absence of
`DW_AT_data_member_location`. With
[D18008](https://reviews.llvm.org/D18008) LLDB started to pretend that
union members always have a `0` `DW_AT_data_member_location` by default
(because GCC never emits these locations).
In [D124409](https://reviews.llvm.org/D124409) LLDB stopped checking the
`DW_AT_external` flag to account for the case where GCC doesn't emit the
flag for types in anonymous namespaces; instead we only check for
presence of `DW_AT_data_member_location`s.
The combination of these changes then meant that LLDB would never
correctly detect that a union has static data members.
**Solution**
Instead of unconditionally initializing the `member_byte_offset` to `0`
specifically for union members, this patch proposes to check for both
the absence of `DW_AT_data_member_location` and `DW_AT_declaration`,
which consistently gets emitted for static data members on GCC and
Clang.
We initialize the `member_byte_offset` to `0` anyway if we determine it
wasn't a static. So removing the special case for unions makes this code
simpler to reason about.
Long-term, we should just use DWARFv5's new representation for static
data members.
Fixes#68135
The error message "Couldn't lookup symbols" emitted from IRExecutionUnit
is grammatically incorrect. "Lookup" is noun when spelled without a
space. Update the error message to use the verb "look up" instead.
The ordering in which functions are presented to the expression evaluator in
this test setting triggers a known bug in LLDB.
Differential Revision: https://reviews.llvm.org/D154843
D68678 added a test that ensures an Apple accelerator lookup is done
efficiently. Since these tables are not used for DWARF 5, we should decorate the
test appropriately.
Differential Revision: https://reviews.llvm.org/D154268
When formatting a variable, the max depth would potentially be ignored
if the current value object failed to print itself. Change that to
always respect the max depth, even if failure occurs.
rdar://109855463
Differential Revision: https://reviews.llvm.org/D152409
The `target.max-children-depth` setting and `--depth` flag would be
ignored if treating pointer as arrays, fix that by always incrementing
the current depth when printing a new child.
rdar://109855463
Differential Revision: https://reviews.llvm.org/D151950
I fixed some long-standing failures in SBTarget::FindGlobalVariables
but the fix is in the the accelerator table lookups. I fixed it in
the DWARF mappable tables but not everyone uses those, so I had to
restrict the test to systems I know did.
There were two bugs here.
eMatchTypeStartsWith searched for "symbol_name" by adding ".*" to the
end of the symbol name and treating that as a regex, which isn't
actually a regex for "starts with". The ".*" is in fact a no-op. When
we finally get to comparing the name, we compare against whatever form
of the name was in the accelerator table. But for C++ that might be
the mangled name. We should also try demangled names here, since most
users are going the see demangled not mangled names. I fixed these
two bugs and added a bunch of tests for FindGlobalVariables.
This change is in the DWARF parser code, so there may be a similar bug
in PDB, but the test for this was already skipped for Windows, so I
don't know about this.
You might theoretically need to do this Mangled comparison in
DWARFMappedHash::MemoryTable::FindByName
except when we have names we always chop them before looking them up
so I couldn't see any code paths that fail without that change. So I
didn't add that to this patch.
Differential Revision: https://reviews.llvm.org/D151940
Following tests are now passing on LLDB AArch64 Windows buildbot:
lldb-api :: commands/expression/deleting-implicit-copy-constructor/TestDeletingImplicitCopyConstructor.py
lldb-api :: functionalities/data-formatter/data-formatter-categories/TestDataFormatterCategories.py
lldb-api :: lang/cpp/constructors/TestCppConstructors.py
lldb-api :: lang/cpp/namespace/TestNamespace.py
lldb-api :: lang/cpp/this_class_type_mixing/TestThisClassTypeMixing.py
https://lab.llvm.org/buildbot/#/builders/219/builds/3012
This patch removes XFAIL decorator from all of the above.
Differential Revision: https://reviews.llvm.org/D151268
This is an ongoing series of commits that are reformatting our Python
code. Reformatting is done with `black` (23.1.0).
If you end up having problems merging this commit because you have made
changes to a python file, the best way to handle that is to run `git
checkout --ours <yourfile>` and then reformat it with black.
RFC: https://discourse.llvm.org/t/rfc-document-and-standardize-python-code-style
Differential revision: https://reviews.llvm.org/D151460
**Summary**
When filling out the LayoutInfo for a structure with the offsets
from DWARF, LLDB fills gaps in the layout by creating unnamed
bitfields and adding them to the AST. If we don't do this correctly
and our layout has overlapping fields, we will hat an assertion
in `clang::CGRecordLowering::lower()`. Specifically, if we have
a derived class with a VTable and a bitfield immediately following
the vtable pointer, we create a layout with overlapping fields.
This is an oversight in some of the previous cleanups done around this
area.
In `D76808`, we prevented LLDB from creating unnamed bitfields if there
was a gap between the last field of a base class and the start of a bitfield
in the derived class.
In `D112697`, we started accounting for the vtable pointer. The intention
there was to make sure the offset bookkeeping accounted for the
existence of a vtable pointer (but we didn't actually want to create
any AST nodes for it). Now that `last_field_info.bit_size` was being
set even for artifical fields, the previous fix `D76808` broke
specifically for cases where the bitfield was the first member of a
derived class with a vtable (this scenario wasn't tested so we didn't
notice it). I.e., we started creating redundant unnamed bitfields for
where the vtable pointer usually sits. This confused the lowering logic
in clang.
This patch adds a condition to `ShouldCreateUnnamedBitfield` which
checks whether the first field in the derived class is a vtable ptr.
**Testing**
* Added API test case
Differential Revision: https://reviews.llvm.org/D150591
This patch add or removes XFAIL decorator from various tests which were marked
xfail for windows.
since 44363f2 various tests have started passing but introduced a couple of new failures.
Weight is in favor of new XPasses and I have removed XFail decorator from them. Also
some new tests have started failing for which we need to file separate bugs. I have
marked them xfail for now and will add the bug id after investigating the issue.
Differential Revision: https://reviews.llvm.org/D149235
We just want to test whether the language switch works.
This is easier to control for libc++, since for bots building
the tests against libstdc++ we might not have the necessary
`<compare>` header available currently.
It was avoiding a crash at the time on macOS, apparently, and
it skipped the test on all platforms. This test passes for me
now on macOS, let's remove the skip and see how the bots go.
**Summary**
In a program such as:
```
namespace A {
namespace B {
struct Bar {};
}
}
namespace B {
struct Foo {};
}
```
...LLDB would run into issues such as:
```
(lldb) expr ::B::Foo f
error: expression failed to parse:
error: <user expression 0>:1:6: no type named 'Foo' in namespace 'A::B'
::B::Foo f
~~~~~^
```
This is because the `SymbolFileDWARF::FindNamespace` implementation
will return *any* namespace it finds if the `parent_decl_ctx` provided
is empty. In `FindExternalVisibleDecls` we use this API to find the
namespace that symbol `B` refers to. If `A::B` happened to be the one
that `SymbolFileDWARF::FindNamespace` looked at first, we would try
to find `struct Foo` in `A::B`. Hence the error.
This patch proposes a new `SymbolFileDWARF::FindNamespace` API that
will only find a match for top-level namespaces, which is what
`FindExternalVisibleDecls` is attempting anyway; it just never
accounted for multiple namespaces of the same name.
**Testing**
* Added API test-case
Differential Revision: https://reviews.llvm.org/D147436
This patch allows users to evaluate expressions using
`expr -l c++20`. Currently DWARF keeps the CU's at
`DW_AT_language` at `DW_LANG_C_plus_plus_14` even
when compiling with `-std=c++20`. So even in "C++20
programs" expression evaluation will by default be
performed in `C++11` mode for now.
Enabling `C++14` has been previously attempted at
https://reviews.llvm.org/D80308
There are some remaining issues around evaluating C++20
expressions. Mainly, lack of support for C++20 AST nodes in
`clang::ASTImporter`. But these can be addressed in follow-up
patches.
Reverting because Xcode requires this to be handled elsewhere.
The global variable list gets constructed using the SBAPI
This reverts commit de10c1a824.
This reverts commit 19128792e2.
As pointed out in https://reviews.llvm.org/D143652 this implementation
doesn't quite work for subobject constructors/destructors because DWARF
can map multiple definitions of a ctor/dtor to the same specification DIE.
With the current implementation we would pick the first definition we
find and use that linkage name which means we can sometimes pick the
wrong dtor/ctor and fail to execute a valid expression.
Differential Revision: https://reviews.llvm.org/D143652
This relands the commit previously reverted in
`d2cc2c5610ffa78736aa99512bc85a85417efb0a` due to failures on Linux
when debugging split-debug-info enabled executables.
The problem was we called `SymbolFileDWARF::FindFunctions` directly
instead of `Module::FindFunctions` which resulted in a nullptr
dereference because the backing `SymbolFileDWARFDwo` didn't have
an index attached to it. The relanded version calls `Module::FindFunctions`
instead.
Differential Revision: https://reviews.llvm.org/D143652