Summary:
The patch adds instructions number generated by a solution
to LSR cost under "-lsr-insns-cost" option.
Reviewers: qcolombet, hfinkel
Differential Revision: http://reviews.llvm.org/D28307
From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 294821
The recommit includes some changes of testcases. No functional change to the patch.
In RateRegister of existing LSR, if a formula contains a Reg which is a SCEVAddRecExpr,
and this SCEVAddRecExpr's loop is an outerloop, the formula will be marked as Loser
and dropped.
Suppose we have an IR that %for.body is outerloop and %for.body2 is innerloop. LSR only
handle inner loop now so only %for.body2 will be handled.
Using the logic above, formula like
reg(%array) + reg({1,+, %size}<%for.body>) + 1*reg({0,+,1}<%for.body2>) will be dropped
no matter what because reg({1,+, %size}<%for.body>) is a SCEVAddRecExpr type reg related
with outerloop. Only formula like
reg(%array) + 1*reg({{1,+, %size}<%for.body>,+,1}<nuw><nsw><%for.body2>) will be kept
because the SCEVAddRecExpr related with outerloop is folded into the initial value of the
SCEVAddRecExpr related with current loop.
But in some cases, we do need to share the basic induction variable
reg{0 ,+, 1}<%for.body2> among LSR Uses to reduce the final total number of induction
variables used by LSR, so we don't want to drop the formula like
reg(%array) + reg({1,+, %size}<%for.body>) + 1*reg({0,+,1}<%for.body2>) unconditionally.
From the existing comment, it tries to avoid considering multiple level loops at the same time.
However, existing LSR only handles innermost loop, so for any SCEVAddRecExpr with a loop other
than current loop, it is an invariant and will be simple to handle, and the formula doesn't have
to be dropped.
Differential Revision: https://reviews.llvm.org/D26429
llvm-svn: 294814
This was marking the loop for deletion after the loop was deleted. This
almost works, except that when we do any kind of debug logging it starts
reading the name of the loop from deleted memory or otherwise blowing
up. This can fail in a bunch of ways. I recently added a test that
*always* does this, and it started failing on the sanitizer bots.
The fix is to mark the loop as deleted in the loop PM infrastructure
before we remove the loop. We can do this by passing the updater into
the routine. That also lets us simplify a bunch of other interface
components here for a net win.
llvm-svn: 294810
This is necessary to avoid warnings from GCC.
InstCombineLoadStoreAlloca.cpp:238:7: error: 'PointerReplacer' declared
with greater visibility than the type of its field 'PointerReplacer::IC'
llvm-svn: 294794
For function-scope variables with large initialisation list, FE usually
generates a global variable to hold the initializer, then generates
memcpy intrinsic to initialize the alloca. InstCombiner::visitAllocaInst
identifies such allocas which are accessed only by reading and replaces
them with the global variable. This is done by casting the global variable
to the type of the alloca and replacing all references.
However, when the global variable is in a different address space which
is disjoint with addr space 0 (e.g. for IR generated from OpenCL,
global variable cannot be in private addr space i.e. addr space 0), casting
the global variable to addr space 0 results in invalid IR for certain
targets (e.g. amdgpu).
To fix this issue, when the global variable is not in addr space 0,
instead of casting it to addr space 0, this patch chases down the uses
of alloca until reaching the load instructions, then replaces load from
alloca with load from the global variable. If during the chasing
bitcast and GEP are encountered, new bitcast and GEP based on the global
variable are generated and used in the load instructions.
Differential Revision: https://reviews.llvm.org/D27283
llvm-svn: 294786
Summary:
This patch starts the implementation as discuss in the following RFC: http://lists.llvm.org/pipermail/llvm-dev/2016-October/106532.html
When optimization duplicates code that will scale down the execution count of a basic block, we will record the duplication factor as part of discriminator so that the offline process tool can find the duplication factor and collect the accurate execution frequency of the corresponding source code. Two important optimization that fall into this category is loop vectorization and loop unroll. This patch records the duplication factor for these 2 optimizations.
The recording will be guarded by a flag encode-duplication-in-discriminators, which is off by default.
Reviewers: probinson, aprantl, davidxl, hfinkel, echristo
Reviewed By: hfinkel
Subscribers: mehdi_amini, anemet, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D26420
llvm-svn: 294782
We previously only created a vector phi node for an induction variable if its
type matched the type of the canonical induction variable.
Differential Revision: https://reviews.llvm.org/D29776
llvm-svn: 294755
Chandler mentioned at the last social that the need for BFI in the new pass manager was causing a slight hiccup for this pass. Given this code has been checked in, but off for over a year, it makes sense to just remove it for now.
Note that there's nothing wrong with the general idea - it's actually a quite good one - and once we have the infrastructure in place to implement this without the full recompuation on every loop, we absolutely should.
llvm-svn: 294715
Now that the call graph supports efficient replacement of a function and
spurious reference edges, we can port ArgumentPromotion to the new pass
manager very easily.
The old PM-specific bits are sunk into callbacks that the new PM simply
doesn't use. Unlike the old PM, the new PM simply does argument
promotion and afterward does the update to LCG reflecting the promoted
function.
Differential Revision: https://reviews.llvm.org/D29580
llvm-svn: 294667
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
This fold already existed for vectors but only when 'C1' was a splat
constant (but 'C2' could be any constant).
There were no tests for any vector constants, so I'm adding a test
that shows non-splat constants for both operands.
llvm-svn: 294650
I intend to use the same type with the same semantics in the WholeProgramDevirt
pass.
Differential Revision: https://reviews.llvm.org/D29746
llvm-svn: 294629
Summary:
This patch allows JumpThreading also thread through guards.
Virtually, guard(cond) is equivalent to the following construction:
if (cond) { do something } else {deoptimize}
Yet it is not explicitly converted into IFs before lowering.
This patch enables early threading through guards in simple cases.
Currently it covers the following situation:
if (cond1) {
// code A
} else {
// code B
}
// code C
guard(cond2)
// code D
If there is implication cond1 => cond2 or !cond1 => cond2, we can transform
this construction into the following:
if (cond1) {
// code A
// code C
} else {
// code B
// code C
guard(cond2)
}
// code D
Thus, removing the guard from one of execution branches.
Patch by Max Kazantsev!
Reviewers: reames, apilipenko, igor-laevsky, anna, sanjoy
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29620
llvm-svn: 294617
This module will contain nothing but vtable definitions and (soon)
available_externally function definitions, so there is no point in keeping
debug info in the module.
Differential Revision: https://reviews.llvm.org/D28913
llvm-svn: 294511
Making the cost model selecting between Interleave, GatherScatter or Scalar vectorization form of memory instruction.
The right decision should be done for non-consecutive memory access instrcuctions that may have more than one vectorization solution.
This patch includes the following changes:
- Cost Model calculates the cost of Load/Store vector form and choose the better option between Widening, Interleave, GatherScactter and Scalarization. Cost Model keeps the widening decision.
- Arrays of Uniform and Scalar values are moved from Legality to Cost Model.
- Cost Model collects Uniforms and Scalars per VF. The collection is based on CM decision map of Loadis/Stores vectorization form.
- Vectorization of memory instruction is performed according to the CM decision.
Differential Revision: https://reviews.llvm.org/D27919
llvm-svn: 294503
Summary:
After the DFS order change for LVI, i have a few testcases that now
take forever.
The TL;DR - This is mainly due to the overdefined cache, but that
requires predicateinfo to fix[1]
In order to maximize reuse of the LVI cache for now, change the order
we iterate in.
This reduces my testcase from 5 minutes to 4 seconds.
I have verified cases like gmic do not get slower.
I am playing with whether the order should be postorder or idf.
[1] In practice, overdefined anywhere should be overdefined
everywhere, so this cache should be global. That also fixes this bug.
The problem, however, is that LVI relies on this cache being filled in
per-block because it wants different values in different blocks due to
precisely the naming issue that predicateinfo fixes. With
predicateinfo, making the cache global works fine on individual
passes, and also resolves this issue.
Reviewers: davide, sanjoy, chandlerc
Subscribers: llvm-commits, djasper
Differential Revision: https://reviews.llvm.org/D29679
llvm-svn: 294398
Currently IRCE relies on the loops it transforms to be (semantically) of
the form:
for (i = START; i < END; i++)
...
or
for (i = START; i > END; i--)
...
However, we were not verifying the presence of the START < END entry
check (i.e. check before the first iteration). We were only verifying
that the backedge was guarded by (i + 1) < END.
Usually this would work "fine" since (especially in Java) most loops do
actually have the START < END check, but of course that is not
guaranteed.
llvm-svn: 294375
Summary:
This patch adds a utility to build extended SSA (see "ABCD: eliminating
array bounds checks on demand"), and an intrinsic to support it. This
is then used to get functionality equivalent to propagateEquality in
GVN, in NewGVN (without having to replace instructions as we go). It
would work similarly in SCCP or other passes. This has been talked
about a few times, so i built a real implementation and tried to
productionize it.
Copies are inserted for operands used in assumes and conditional
branches that are based on comparisons (see below for more)
Every use affected by the predicate is renamed to the appropriate
intrinsic result.
E.g.
%cmp = icmp eq i32 %x, 50
br i1 %cmp, label %true, label %false
true:
ret i32 %x
false:
ret i32 1
will become
%cmp = icmp eq i32, %x, 50
br i1 %cmp, label %true, label %false
true:
; Has predicate info
; branch predicate info { TrueEdge: 1 Comparison: %cmp = icmp eq i32 %x, 50 }
%x.0 = call @llvm.ssa_copy.i32(i32 %x)
ret i32 %x.0
false:
ret i23 1
(you can use -print-predicateinfo to get an annotated-with-predicateinfo dump)
This enables us to easily determine what operations are affected by a
given predicate, and how operations affected by a chain of
predicates.
Reviewers: davide, sanjoy
Subscribers: mgorny, llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D29519
Update for review comments
Fix a bug Nuno noticed where we are giving information about and/or on edges where the info is not useful and easy to use wrong
Update for review comments
llvm-svn: 294351
This reverts commit r294250. It caused PR31891.
Add a test case that shows that inlinable calls retain location
information with an accurate scope.
llvm-svn: 294317
Summary: Checking CS.getCalledFunction() == nullptr does not necessary indicate indirect call. We also need to check if CS.getCalledValue() is not a constant.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29570
llvm-svn: 294260
This breaks when one of the extra values is also a scalar that
participates in the same vectorization tree which we'll end up
reducing.
llvm-svn: 294245
Summary: When type casting of the return value is needed, promoteIndirectCall will return the type casting instruction instead of the direct call. This patch changed to return the direct call instruction instead.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29569
llvm-svn: 294205
This patch is based on the llvm-dev discussion here:
http://lists.llvm.org/pipermail/llvm-dev/2017-January/109631.html
Folding to i1 should always be desirable because that's better for value tracking
and we have special folds for i1 types.
I checked for other users of shouldChangeType() where this might have an effect,
but we already handle the i1 case differently than other types in all of those cases.
Side note: the default datalayout includes i1, so it seems we only find this gap in
shouldChangeType + phi folding for the case when there is (1) an explicit datalayout
without i1, (2) casting to i1 from a legal type, and (3) a phi with exactly 2 incoming
casted operands (as Björn mentioned).
Differential Revision: https://reviews.llvm.org/D29336
llvm-svn: 294066