The recommit includes some changes of testcases. No functional change to the patch.
In RateRegister of existing LSR, if a formula contains a Reg which is a SCEVAddRecExpr,
and this SCEVAddRecExpr's loop is an outerloop, the formula will be marked as Loser
and dropped.
Suppose we have an IR that %for.body is outerloop and %for.body2 is innerloop. LSR only
handle inner loop now so only %for.body2 will be handled.
Using the logic above, formula like
reg(%array) + reg({1,+, %size}<%for.body>) + 1*reg({0,+,1}<%for.body2>) will be dropped
no matter what because reg({1,+, %size}<%for.body>) is a SCEVAddRecExpr type reg related
with outerloop. Only formula like
reg(%array) + 1*reg({{1,+, %size}<%for.body>,+,1}<nuw><nsw><%for.body2>) will be kept
because the SCEVAddRecExpr related with outerloop is folded into the initial value of the
SCEVAddRecExpr related with current loop.
But in some cases, we do need to share the basic induction variable
reg{0 ,+, 1}<%for.body2> among LSR Uses to reduce the final total number of induction
variables used by LSR, so we don't want to drop the formula like
reg(%array) + reg({1,+, %size}<%for.body>) + 1*reg({0,+,1}<%for.body2>) unconditionally.
From the existing comment, it tries to avoid considering multiple level loops at the same time.
However, existing LSR only handles innermost loop, so for any SCEVAddRecExpr with a loop other
than current loop, it is an invariant and will be simple to handle, and the formula doesn't have
to be dropped.
Differential Revision: https://reviews.llvm.org/D26429
llvm-svn: 294814
Since r274013, we've been looking through bitcasts on broadcast inputs.
In the scalar-folding case (from a load, build_vector, or sc2vec),
the input type didn't matter, as we'd simply bitcast the resulting
scalar back.
However, when broadcasting a 128-bit-lane-aligned element, we create an
EXTRACT_SUBVECTOR. Use proper types, by creating an extract_subvector
of the original input type.
llvm-svn: 294774
In the encoding of system registers in the M-class MSR instruction the mask bits
should be 2 for registers that don't take a _<bits> qualifier (the instruction
is unpredictable otherwise), and should also be 2 if the register takes a
_<bits> qualifier but it's not present as no _<bits> is an alias for _nzcvq.
Differential Revision: https://reviews.llvm.org/D29828
llvm-svn: 294762
This makes sure we get the same redefinition rules regardless of who
is printing (asm parser, codegen) and to what (asm, obj).
This fixes an unintentional regression in r293936.
llvm-svn: 294752
The patch comes in 2 parts:
1 - it makes use of the SelectionDAG::NewNodesMustHaveLegalTypes flag to tell when it can safely constant fold illegal types.
2 - it correctly resets SelectionDAG::NewNodesMustHaveLegalTypes at the start of each call to SelectionDAGISel::CodeGenAndEmitDAG so all the pre-legalization stages can make use of it - not just the first basic block that gets handled.
Fix for PR30760
Differential Revision: https://reviews.llvm.org/D29568
llvm-svn: 294749
In some cases we call getTargetConstantBitsFromNode for nodes that haven't been lowered from BUILD_VECTOR yet
Note: We're getting very close to being able to move most of the constant extraction code from getTargetShuffleMaskIndices into getTargetConstantBitsFromNode
llvm-svn: 294746
This change returns empty PSet list for M0 register. Otherwise its
PSet as defined by tablegen is SReg_32. This results in incorrect
register pressure calculation every time an instruction uses M0.
Such uses count as SReg_32 PSet and inadequately increase pressure
on SGPRs.
Differential Revision: https://reviews.llvm.org/D29798
llvm-svn: 294691
Gcc supports target armv7ve which is armv7-a with virtualization
extensions. This change adds support for this in llvm for gcc
compatibility.
Also remove redundant FeatureHWDiv, FeatureHWDivARM for a few models as
this is specified automatically by FeatureVirtualization.
Patch by Manoj Gupta.
Differential Revision: https://reviews.llvm.org/D29472
llvm-svn: 294661
This requires that we communicate to X86InstrInfo::optimizeCompareInstr
that the second operand is neither a register nor an immediate. The way we
do that is by setting CmpMask to zero.
Note that there were already instructions where the second operand was not a
register nor an immediate, namely X86::SUB*rm, so also set CmpMask to zero
for those instructions. This seems like a latent bug, but I was unable to
trigger it.
Differential Revision: https://reviews.llvm.org/D28621
llvm-svn: 294634
Summary:
Fix two bugs in SelectionDAGBuilder::FindMergedConditions reported by
Mikael Holmen. Handle non-canonicalized xor not operation
correctly (was assuming operand 0 was always the non-constant operand)
and check that the negated condition is also in the same block as the
original and/or instruction (as is done for and/or operands already)
before proceeding with optimization.
Reviewers: bogner, MatzeB, qcolombet
Subscribers: mcrosier, uabelho, llvm-commits
Differential Revision: https://reviews.llvm.org/D29680
llvm-svn: 294605
If some of the trailing or leading bytes of a load combine pattern are zeroes we can combine the pattern to a load + zext and shift. Currently we don't support it, so the tests check the current codegen without load combine. This change will make the patch to support this kind of combine a bit more clear.
llvm-svn: 294591
Stack Smash Protection is not completely free, so in hot code, the overhead it causes can cause performance issues. By adding diagnostic information for which function have SSP and why, a user can quickly determine what they can do to stop SSP being applied to a specific hot function.
This change adds an SSP-specific DiagnosticInfo class and uses of it to the Stack Protection code. A subsequent change to clang will cause the remarks to be emitted when enabled.
Patch by: James Henderson
Differential Revision: https://reviews.llvm.org/D29023
llvm-svn: 294590
In combineOrCmpEqZeroToCtlzSrl, replace "getConstantOperand == 0" by "isNullConstant" to account for floating point constants.
Differential Revision: https://reviews.llvm.org/D29756
llvm-svn: 294588
LowerBuildVectorv16i8/LowerBuildVectorv8i16 insert values into a UNDEF vector if the build vector doesn't contain any zero elements, resulting in register dependencies with a previous use of the register.
This patch attempts to break the register dependency by either always zeroing the vector before hand or (if we're inserting to the 0'th element) by using VZEXT_MOVL(SCALAR_TO_VECTOR(i32 AEXT(Elt))) which lowers to (V)MOVD and performs a similar function. Additionally (V)MOVD is a shorter instruction than PINSRB/PINSRW. We already do something similar for SSE41 PINSRD.
On pre-SSE41 LowerBuildVectorv16i8 we go a little further and use VZEXT_MOVL(SCALAR_TO_VECTOR(i32 ZEXT(Elt))) if the build vector contains zeros to avoid the vector zeroing at the cost of a scalar zero extension, which can probably be brought over to the other cases in a future patch in some cases (load folding etc.)
Differential Revision: https://reviews.llvm.org/D29720
llvm-svn: 294581
This patch does the following.
1. Adds an Intrinsic int_x86_clzero which works with __builtin_ia32_clzero
2. Identifies clzero feature using cpuid info. (Function:8000_0008, Checks if EBX[0]=1)
3. Adds the clzero feature under znver1 architecture.
4. The custom inserter is added in Lowering.
5. A testcase is added to check the intrinsic.
6. The clzero instruction is added to assembler test.
Patch by Ganesh Gopalasubramanian with a couple formatting tweaks, a disassembler test, and using update_llc_test.py from me.
Differential revision: https://reviews.llvm.org/D29385
llvm-svn: 294558
Functions that have a dynamic alloca require a base register which is defined to
be X19 on AArch64 and r6 on ARM. We have defined the swifterror register to be
the same register. Use a different callee save register for swifterror instead:
X21 on AArch64
R8 on ARM
rdar://30433803
llvm-svn: 294551
It'll usually be immediately legalized back to a libcall, but occasionally
something can be done with it so we'd just as well enable that flexibility from
the start.
llvm-svn: 294530
We mark X0 as preserved by a call that passes the returned parameter.
x0 = ...
fun(x0) // no implicit def of x0
This no longer is valid if we pass the parameter in a different register then
the returned value as is the case with a swiftself parameter (passed in x20).
x20 = ...
fun(x20) // there should be an implict def of x8
rdar://30425845
llvm-svn: 294527
AArch64 has specific instructions to multiply two numbers at double the width
and produce the high part of the result. These can be used to implement LLVM's
mul.with.overflow instructions fairly simply. Helps with C++ operator new[].
llvm-svn: 294519
The AAPCS ABI is substantially more complicated so that's coming in a separate
patch. For now we can generate correct code for iOS though.
llvm-svn: 294493
I forgot to remove the neonfp target feature from the test, which means we'd
have trouble selecting VADDS on targets that have neonfp enabled by default.
llvm-svn: 294451
Add a register bank for floating point values and select simple instructions
using them (add, copies from GPR).
This assumes that the hardware can cope with a single precision add (VADDS)
instruction, so the legalizer will treat G_FADD as legal and the instruction
selector will refuse to select if the hardware doesn't support it. In the future
we'll want to be more careful about this, and legalize to libcalls if we have to
use soft float.
llvm-svn: 294442