Instead of changing the return type of `ModuleMap::findOrCreateModule`, this patch adds a counterpart that only returns `Module *` and thus has the same signature as `createModule()`, which is important in `ASTReader`.
This patch avoids eagerly populating the submodule index on `Module`
construction. The `StringMap` allocation shows up in my profiles of
`clang-scan-deps`, while the index is not necessary most of the time. We
still construct it on-demand.
Moreover, this patch avoids performing qualified submodule lookup in
`ASTReader` whenever we're serializing a module graph whose top-level
module is unknown. This is pointless, since that's guaranteed to never
find any existing submodules anyway.
This speeds up `clang-scan-deps` by ~0.5% on my workload.
With inferred modules, the dependency scanner takes care to replace the
fake "__inferred_module.map" path with the file that allowed the module
to be inferred. However, this only worked when such a module was
imported directly in the TU. Whenever such module got loaded
transitively, the scanner would fail to perform the replacement. This is
caused by the fact that PCM files are lossy and drop this information.
This patch makes sure that PCMs include this file for each submodule (in
the `SUBMODULE_DEFINITION` record), fixes one existing test with an
incorrect assertion, and does a little drive-by refactoring of
`ModuleMap`.
I noticed that some PCM files contain `HeaderFileInfo` for headers only
included in a dependent PCM file, which is wasteful.
This patch changes the logic to only write headers that are included
locally. This makes the PCM files smaller and saves some superfluous
deserialization of `HeaderFileInfo` triggered by
`Preprocessor::alreadyIncluded()`.
This patch shrinks the size of the `Module` class from 2112B to 1624B. I
wasn't able to get a good data on the actual impact on memory usage, but
given my `clang-scan-deps` workload at hand (with tens of thousands of
instances), I think there should be some win here. This also speeds up
my benchmark by under 0.1%.
Clang uses timestamp files to track the last time an implicitly-built
PCM file was verified to be up-to-date with regard to its inputs. With
`-fbuild-session-{file,timestamp}=` and
`-fmodules-validate-once-per-build-session` this reduces the number of
times a PCM file is checked per "build session".
The behavior I'm seeing with the current scheme is that when lots of
Clang instances wait for the same PCM to be built, they race to validate
it as soon as the file lock gets released, causing lots of concurrent
IO.
This patch makes it so that the timestamp is written by the same Clang
instance responsible for building the PCM while still holding the lock.
This makes it so that whenever a PCM file gets compiled, it's never
re-validated in the same build session.
I believe this is as sound as the current scheme. One thing to be aware
of is that there might be a time interval between accessing input file N
and writing the timestamp file, where changes to input files 0..<N would
not result in a rebuild. Since this is the case current scheme too, I'm
not too concerned about that.
I've seen this speed up `clang-scan-deps` by ~27%.
This patch adds an IsText parameter to the following getBufferForFile,
getBufferForFileImpl. We introduce a new virtual function
openFileForReadBinary which defaults to openFileForRead except in
RealFileSystem which uses the OF_None flag instead of OF_Text.
The default is set to OF_Text instead of OF_None, this change in value
does not affect any other platforms other than z/OS. Setting this
parameter correctly is required to open files on z/OS in the correct
encoding. The IsText parameter is based on the context of where we open
files, for example, in the ASTReader, HeaderMap requires that files
always be opened in binary even though they might be tagged as text.
The 'vector' clause specifies the iterations to be executed in vector or
SIMD mode. There are some limitations on which associated compute
contexts may be associated with this and have arguments, but otherwise
this is a fairly unrestricted clause.
It DOES have region limits like 'gang' and 'worker'.
The worker clause specifies iterations of the loop/ that are executed in
parallel by distributing the iterations among the multiple works within
a single gang.
The sema rules for this type are simply that it cannot be combined with
a `kernel` construct with a `num_workers` clause, child `loop` clauses
cannot contain a `gang` or `worker` clause, and that the argument is oly
allowed when associated with a `kernel`.
This patch reapplies #111173, fixing a bug when instantiating dependent
expressions that name a member template that is later explicitly
specialized for a class specialization that is implicitly instantiated.
The bug is addressed by adding the `hasMemberSpecialization` function,
which return `true` if _any_ redeclaration is a member specialization.
This is then used when determining the instantiation pattern for a
specialization of a template, and when collecting template arguments for
a specialization of a template.
The 'gang' clause is used to specify parallel execution of loops, thus
has some complicated rules depending on the 'loop's associated compute
construct. This patch implements all of those.
Add the permutation clause for the interchange directive which will be
introduced in the upcoming OpenMP 6.0 specification. A preview has been
published in
[Technical Report12](https://www.openmp.org/wp-content/uploads/openmp-TR12.pdf).
This fixes instantiation of definition for friend function templates,
when the declaration found and the one containing the definition
have different template contexts.
In these cases, the the function declaration corresponding to the
definition is not available; it may not even be instantiated at all.
So this patch adds a bit which tracks which function template
declaration was instantiated from the member template.
It's used to find which primary template serves as a context
for the purpose of obtaining the template arguments needed
to instantiate the definition.
Fixes#55509
Reapplies #106585, fixing an issue where non-dependent names of member
templates appearing prior to that member template being explicitly
specialized for an implicitly instantiated class template specialization
would incorrectly use the definition of the explicitly specialized
member template.
The 'tile' clause shares quite a bit of the rules with 'collapse', so a
followup patch will add those tests/behaviors. This patch deals with
adding the AST node.
The 'tile' clause takes a series of integer constant expressions, or *.
The asterisk is now represented by a new OpenACCAsteriskSizeExpr node,
else this clause is very similar to others.
- In Sema, when encountering Decls with function effects needing
verification, add them to a vector, DeclsWithEffectsToVerify.
- Update AST serialization to include DeclsWithEffectsToVerify.
- In AnalysisBasedWarnings, use DeclsWithEffectsToVerify as a work
queue, verifying functions with declared effects, and inferring (when
permitted and necessary) whether their callees have effects.
---------
Co-authored-by: Doug Wyatt <dwyatt@apple.com>
Co-authored-by: Sirraide <aeternalmail@gmail.com>
Co-authored-by: Erich Keane <ekeane@nvidia.com>
The 'collapse' clause on a 'loop' construct is used to specify how many
nested loops are associated with the 'loop' construct. It takes an
optional 'force' tag, and an integer constant expression as arguments.
There are many other restrictions based on the contents of the loop/etc,
but those are implemented in followup patches, for now, this patch just
adds the AST node and does basic argument checking on the loop-count.
Fixed a crash for the attached test case due to we missed to emit the
deduction guide. The reason is, the deduction guide is attached to the
export-decl in the imported module. So we won't emit it by traversing the
AST of the current TU.
Summary:
https://github.com/llvm/llvm-project/pull/109167 serializes
FunctionToLambdasMap in the order of pointers in DenseMap. It gives
different order with different memory layouts. Fix this issue by using
LocalDeclID instead of pointers.
Test Plan: check-clang
Some `FileManager` APIs still return `{File,Directory}Entry` instead of
the preferred `{File,Directory}EntryRef`. These are documented to be
deprecated, but don't have the attribute that warns on their usage. This
PR marks them as such with `LLVM_DEPRECATED()` and replaces their usage
with the recommended counterparts. NFCI.
Summary:
Because AST loading code is lazy and happens in unpredictable order, it
is possible that a function and lambda inside the function can be loaded
from different modules. As a result, the captured DeclRefExpr won’t
match the corresponding VarDecl inside the function. This situation is
reflected in the AST as follows:
```
FunctionDecl 0x555564f4aff0 <Conv.h:33:1, line:41:1> line:33:35 imported in ./thrift_cpp2_base.h hidden tryTo 'Expected<Tgt, const char *> ()' inline
|-also in ./folly-conv.h
`-CompoundStmt 0x555564f7cfc8 <col:43, line:41:1>
|-DeclStmt 0x555564f7ced8 <line:34:3, col:17>
| `-VarDecl 0x555564f7cef8 <col:3, col:16> col:7 imported in ./thrift_cpp2_base.h hidden referenced result 'Tgt' cinit
| `-IntegerLiteral 0x555564f7d080 <col:16> 'int' 0
|-CallExpr 0x555564f7cea8 <line:39:3, col:76> '<dependent type>'
| |-UnresolvedLookupExpr 0x555564f7bea0 <col:3, col:19> '<overloaded function type>' lvalue (no ADL) = 'then_' 0x555564f7bef0
| |-CXXTemporaryObjectExpr 0x555564f7bcb0 <col:25, col:45> 'Expected<bool, int>':'folly::Expected<bool, int>' 'void () noexcept' zeroing
| `-LambdaExpr 0x555564f7bc88 <col:48, col:75> '(lambda at Conv.h:39:48)'
| |-CXXRecordDecl 0x555564f76b88 <col:48> col:48 imported in ./folly-conv.h hidden implicit <undeserialized declarations> class definition
| | |-also in ./thrift_cpp2_base.h
| | `-DefinitionData lambda empty standard_layout trivially_copyable literal can_const_default_init
| | |-DefaultConstructor defaulted_is_constexpr
| | |-CopyConstructor simple trivial has_const_param needs_implicit implicit_has_const_param
| | |-MoveConstructor exists simple trivial needs_implicit
| | |-CopyAssignment trivial has_const_param needs_implicit implicit_has_const_param
| | |-MoveAssignment
| | `-Destructor simple irrelevant trivial constexpr needs_implicit
| `-CompoundStmt 0x555564f7d1a8 <col:58, col:75>
| `-ReturnStmt 0x555564f7d198 <col:60, col:67>
| `-DeclRefExpr 0x555564f7d0a0 <col:67> 'Tgt' lvalue Var 0x555564f7d0c8 'result' 'Tgt' refers_to_enclosing_variable_or_capture
`-ReturnStmt 0x555564f7bc78 <line:40:3, col:11>
`-InitListExpr 0x555564f7bc38 <col:10, col:11> 'void'
```
This diff modifies the AST deserialization process to load lambdas
within the canonical function declaration sooner, immediately following
the function, ensuring that they are loaded from the same module.
Re-land https://github.com/llvm/llvm-project/pull/104512 Added test case
that caused crash due to multiple enclosed lambdas deserialization.
Test Plan: check-clang
This implements the logic of the `common_type` base template as a
builtin alias. If there should be no `type` member, an empty class is
returned. Otherwise a specialization of a `type_identity`-like class is
returned. The base template (i.e. `std::common_type`) as well as the
empty class and `type_identity`-like struct are given as arguments to
the builtin.
GlobalMethodPool is a wrapper around DenseMap that does not add
anything except:
using Lists = std::pair<ObjCMethodList, ObjCMethodList>;
This patch removes the wrapper and switches to an alias with "using".
In ReadMethodPool in ASTReader.cpp, we can simplify:
insert(std::make_pair(Sel, SemaObjC::GlobalMethodPool::Lists()))
to:
try_emplace(Sel)
But then try_emplace(Sel).first->second is the same as operator[], so
this patch simplifies the rest of the function.
Currently, clang rejects the following explicit specialization of `f`
due to the constraints not being equivalent:
```
template<typename T>
struct A
{
template<bool B>
void f() requires B;
};
template<>
template<bool B>
void A<int>::f() requires B { }
```
This happens because, in most cases, we do not set the flag indicating
whether a `RedeclarableTemplate` is an explicit specialization of a
member of an implicitly instantiated class template specialization until
_after_ we compare constraints for equivalence. This patch addresses the
issue (and a number of other issues) by:
- storing the flag indicating whether a declaration is a member
specialization on a per declaration basis, and
- significantly refactoring `Sema::getTemplateInstantiationArgs` so we
collect the right set of template argument in all cases.
Many of our declaration matching & constraint evaluation woes can be
traced back to bugs in `Sema::getTemplateInstantiationArgs`. This
change/refactor should fix a lot of them. It also paves the way for
fixing #101330 and #105462 per my suggestion in #102267 (which I have
implemented on top of this patch but will merge in a subsequent PR).
This patch adds an IsText parameter to the following functions
openFileForRead, getBufferForFile, getBufferForFileImpl and determines
whether a file is text by querying the file tag on z/OS. The default is
set to OF_Text instead of OF_None, this change in value does not affect
any other platforms other than z/OS.
Resolves: #70930 (and probably latest comments from clangd/clangd#251)
by fixing racing for the shared DiagStorage value which caused messing with args inside the storage and then formatting the following message with getArgSInt(1) == 2:
def err_module_odr_violation_function : Error<
"%q0 has different definitions in different modules; "
"%select{definition in module '%2'|defined here}1 "
"first difference is "
which causes HandleSelectModifier to go beyond the ArgumentLen so the recursive call to FormatDiagnostic was made with DiagStr > DiagEnd that leads to infinite while (DiagStr != DiagEnd).
The Main Idea:
Reuse the existing DiagStorageAllocator logic to make all DiagnosticBuilders having independent states.
Also, encapsulating the rest of state (e.g. ID and Loc) into DiagnosticBuilder.
The last attempt failed -
https://github.com/llvm/llvm-project/pull/108187#issuecomment-2353122096
so was reverted - #108838
Resolves: #70930 (and probably latest comments from
https://github.com/clangd/clangd/issues/251)
by fixing racing for the shared `DiagStorage` value which caused messing
with args inside the storage and then formatting the following message
with `getArgSInt(1)` == 2:
```
def err_module_odr_violation_function : Error<
"%q0 has different definitions in different modules; "
"%select{definition in module '%2'|defined here}1 "
"first difference is "
```
which causes `HandleSelectModifier` to go beyond the `ArgumentLen` so
the recursive call to `FormatDiagnostic` was made with `DiagStr` >
`DiagEnd` that leads to infinite `while (DiagStr != DiagEnd)`.
**The Main Idea:**
Reuse the existing `DiagStorageAllocator` logic to make all
`DiagnosticBuilder`s having independent states.
Also, encapsulating the rest of state (e.g. ID and Loc) into
`DiagnosticBuilder`.
**TODO (if it will be requested by reviewer):**
- [x] add a test (I have no idea how to turn a whole bunch of my
proprietary code which leads `clangd` to OOM into a small public
example.. probably I must try using
[this](https://github.com/llvm/llvm-project/issues/70930#issuecomment-2209872975)
instead)
- [x] [`Diag.CurDiagID !=
diag::fatal_too_many_errors`](https://github.com/llvm/llvm-project/pull/108187#pullrequestreview-2296395489)
- [ ] ? get rid of `DiagStorageAllocator` at all and make
`DiagnosticBuilder` having they own `DiagnosticStorage` coz it seems
pretty small so should fit the stack for short-living
`DiagnosticBuilder` instances
This reverts commit e7f782e748.
This had UBSan failures:
[----------] 1 test from ConfigCompileTests
[ RUN ] ConfigCompileTests.DiagnosticSuppression
Config fragment: compiling <unknown>:0 -> 0x00007B8366E2F7D8 (trusted=false)
/usr/local/google/home/fmayer/large/llvm-project/llvm/include/llvm/ADT/IntrusiveRefCntPtr.h:203:33: runtime error: reference binding to null pointer of type 'clang::DiagnosticIDs'
UndefinedBehaviorSanitizer: undefined-behavior /usr/local/google/home/fmayer/large/llvm-project/llvm/include/llvm/ADT/IntrusiveRefCntPtr.h:203:33
Pull Request: https://github.com/llvm/llvm-project/pull/108645
HLSL output parameters are denoted with the `inout` and `out` keywords
in the function declaration. When an argument to an output parameter is
constructed a temporary value is constructed for the argument.
For `inout` pamameters the argument is initialized via copy-initialization
from the argument lvalue expression to the parameter type. For `out`
parameters the argument is not initialized before the call.
In both cases on return of the function the temporary value is written
back to the argument lvalue expression through an implicit assignment
binary operator with casting as required.
This change introduces a new HLSLOutArgExpr ast node which represents
the output argument behavior. The OutArgExpr has three defined children:
- An OpaqueValueExpr of the argument lvalue expression.
- An OpaqueValueExpr of the copy-initialized parameter.
- A BinaryOpExpr assigning the first with the value of the second.
Fixes#87526
---------
Co-authored-by: Damyan Pepper <damyanp@microsoft.com>
Co-authored-by: John McCall <rjmccall@gmail.com>
Introducing `HLSLAttributedResourceType` - a new type that is similar to
`AttributedType` but with additional data specific to HLSL resources.
`AttributeType` currently only stores an attribute kind and no
additional data from the type attribute parameters. This does not really
work for HLSL resources since its type attributes contain non-boolean
values that need to be retained as well.
For example:
```
template <typename T> class RWBuffer {
__hlsl_resource_t [[hlsl::resource_class(uav)]] [[hlsl::is_rov]] handle;
};
```
The data `HLSLAttributedResourceType` needs to eventually store are:
- resource class (SRV, UAV, CBuffer, Sampler)
- texture dimension(1-3)
- flags is_rov, is_array, is_feedback and is_multisample
- contained type
All of these values except contained type will be stored in
`HLSLAttributedResourceType::Attributes` struct and accessed
individually via the fields. There is also `Data` alias that covers all
of these values as a `unsigned` which is used for hashing and the AST
type serialization.
During type attribute processing all HLSL type attributes will be
validated and collected by SemaHLSL (by
`SemaHLSL::handleResourceTypeAttr`) and in the end combined into a
single `HLSLAttributedResourceType` instance (in
`SemaHLSL::ProcessResourceTypeAttributes`). `SemaHLSL` will also need to
short-term store the `TypeLoc` information for the new type that will be
grabbed by `TypeSpecLocFiller` soon after the type is created.
Part 1/2 of #104861