`parent_id` and `stack_id` represent location
where the thread was created, so it's reasonable
to keep them togeter.
For now, only Asan and MemProf use `stack_id`,
but it will be halpfull to print thread origin from
other sanitizers as well.
For #111948
Fixes asan, msan crash on check added in #108684.
The #108684 includes reproducer of the issue.
Change interface of `GetThreadStackAndTls` to
set `tls_begin` and `tls_end` at the same time.
C++11 `alignas` is already used extensively. `alignas` must precede
`static`, so adjust the ordering accordingly.
msan.cpp: Clang 15 doesn't allow `__attribute__((visibility("default"))) alignas(16)`.
Use the order `alignas(16) SANITIZER_INTERFACE_ATTRIBUTE`. Tested with Clang 7.
Pull Request: https://github.com/llvm/llvm-project/pull/98958
This fixes https://github.com/llvm/llvm-project/issues/87324.
We haven't been able to come up with a minimal reproducer but we can
reliabely avoid this failure with the following fix. Prior to the
GetGlobalLowLevelAllocator change, the old LowLevelAllocator aquired a
lock associated with it preventing that specific allocator from being
accessed at the same time by many threads. With the
GetGlobalLowLevelAllocator change, I had accidentally replaced it but
not taken into account the lock, so we can have a data race if the
allocator is used at any point while a thread is being created. The
global allocator can be used for flag parsing or registering asan
globals.
This removes and replaces usage of a few LowLevelAllocators with a single one
provided by sanitizer_common. Functionally, there should be no difference
between using different allocators vs the same one. This works really well
with D158783 which controls the size of each allocator mmap to significantly
reduce fragmentation.
This doesn't remove them all, mainly the ones used by asan and the flag parser.
Differential Revision: https://reviews.llvm.org/D158786
The test currently crashes as:
AddressSanitizer: CHECK failed: asan_poisoning.cpp:38 "((AddrIsAlignedByGranularity(addr))) != (0)"
Main stack address/size don't have to be aligned on asan shadow granularity.
Align stack bottom.
Reviewed By: melver, vitalybuka
Differential Revision: https://reviews.llvm.org/D145799
Main goal is to remove thread registry dependency from the interface because HWASAN is using its own code to manage threads.
Reviewed By: vitalybuka, kstoimenov
Differential Revision: https://reviews.llvm.org/D140039
Main goal is to remove thread registry dependency from the interface because HWASAN is using its own code to manage threads.
Reviewed By: vitalybuka, kstoimenov
Differential Revision: https://reviews.llvm.org/D140039
TLS teardown is currently broken, as we unpoison the shadow a little bit
and to the right of the TLS section, rather than the full TLS section
itself. This currently breaks at -O0, and breaks with some upcoming
globals code that I have.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D120080
asan does not use user_id for anything,
so don't pass it to ThreadCreate.
Passing a random uninitialized field of AsanThread
as user_id does not make much sense anyway.
Depends on D113921.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D113922
Mutex does not support LINKER_INITIALIZED support.
As preparation to switching BlockingMutex to Mutex,
proactively replace all BlockingMutex(LINKER_INITIALIZED) to Mutex.
All of these are objects with static storage duration and Mutex ctor
is constexpr, so it should be equivalent.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D106944
Currently ThreadRegistry is overcomplicated because of tsan,
it needs tid quarantine and reuse counters. Other sanitizers
don't need that. It also seems that no other sanitizer now
needs max number of threads. Asan used to need 2^24 limit,
but it does not seem to be needed now. Other sanitizers blindly
copy-pasted that without reasons. Lsan also uses quarantine,
but I don't see why that may be potentially needed.
Add a ThreadRegistry ctor that does not require any sizes
and use it in all sanitizers except for tsan.
In preparation for new tsan runtime, which won't need
any of these parameters as well.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D105713
Currently ThreadRegistry is overcomplicated because of tsan,
it needs tid quarantine and reuse counters. Other sanitizers
don't need that. It also seems that no other sanitizer now
needs max number of threads. Asan used to need 2^24 limit,
but it does not seem to be needed now. Other sanitizers blindly
copy-pasted that without reasons. Lsan also uses quarantine,
but I don't see why that may be potentially needed.
Add a ThreadRegistry ctor that does not require any sizes
and use it in all sanitizers except for tsan.
In preparation for new tsan runtime, which won't need
any of these parameters as well.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D105713
Currently we have a bit of a mess related to tids:
- sanitizers re-declare kInvalidTid multiple times
- some call it kUnknownTid
- implicit assumptions that main tid is 0
- asan/memprof claim their tids need to fit into 24 bits,
but this does not seem to be true anymore
- inconsistent use of u32/int to store tids
Introduce kInvalidTid/kMainTid in sanitizer_common
and use them consistently.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D101428
... so that FreeBSD specific GetTls/glibc specific pthread_self code can be
removed. This also helps FreeBSD arm64/powerpc64 which don't have GetTls
implementation yet.
GetTls is the range of
* thread control block and optional TLS_PRE_TCB_SIZE
* static TLS blocks plus static TLS surplus
On glibc, lsan requires the range to include
`pthread::{specific_1stblock,specific}` so that allocations only referenced by
`pthread_setspecific` can be scanned.
This patch uses `dl_iterate_phdr` to collect TLS blocks. Find the one
with `dlpi_tls_modid==1` as one of the initially loaded module, then find
consecutive ranges. The boundaries give us addr and size.
This allows us to drop the glibc internal `_dl_get_tls_static_info` and
`InitTlsSize`. However, huge glibc x86-64 binaries with numerous shared objects
may observe time complexity penalty, so exclude them for now. Use the simplified
method with non-Android Linux for now, but in theory this can be used with *BSD
and potentially other ELF OSes.
This removal of RISC-V `__builtin_thread_pointer` makes the code compilable with
more compiler versions (added in Clang in 2020-03, added in GCC in 2020-07).
This simplification enables D99566 for TLS Variant I architectures.
Note: as of musl 1.2.2 and FreeBSD 12.2, dlpi_tls_data returned by
dl_iterate_phdr is not desired: https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=254774
This can be worked around by using `__tls_get_addr({modid,0})` instead
of `dlpi_tls_data`. The workaround can be shared with the workaround for glibc<2.25.
This fixes some tests on Alpine Linux x86-64 (musl)
```
test/lsan/Linux/cleanup_in_tsd_destructor.c
test/lsan/Linux/fork.cpp
test/lsan/Linux/fork_threaded.cpp
test/lsan/Linux/use_tls_static.cpp
test/lsan/many_tls_keys_thread.cpp
test/msan/tls_reuse.cpp
```
and `test/lsan/TestCases/many_tls_keys_pthread.cpp` on glibc aarch64.
The number of sanitizer test failures does not change on FreeBSD/amd64 12.2.
Differential Revision: https://reviews.llvm.org/D98926
This was reverted by f176803ef1 due to
Ubuntu 16.04 x86-64 glibc 2.23 problems.
This commit additionally calls `__tls_get_addr({modid,0})` to work around the
dlpi_tls_data==NULL issues for glibc<2.25
(https://sourceware.org/bugzilla/show_bug.cgi?id=19826)
GetTls is the range of
* thread control block and optional TLS_PRE_TCB_SIZE
* static TLS blocks plus static TLS surplus
On glibc, lsan requires the range to include
`pthread::{specific_1stblock,specific}` so that allocations only referenced by
`pthread_setspecific` can be scanned.
This patch uses `dl_iterate_phdr` to collect TLS blocks. Find the one
with `dlpi_tls_modid==1` as one of the initially loaded module, then find
consecutive ranges. The boundaries give us addr and size.
This allows us to drop the glibc internal `_dl_get_tls_static_info` and
`InitTlsSize` entirely. Use the simplified method with non-Android Linux for
now, but in theory this can be used with *BSD and potentially other ELF OSes.
This simplification enables D99566 for TLS Variant I architectures.
See https://reviews.llvm.org/D93972#2480556 for analysis on GetTls usage
across various sanitizers.
Differential Revision: https://reviews.llvm.org/D98926
GetTls is the range of
* thread control block and optional TLS_PRE_TCB_SIZE
* static TLS blocks plus static TLS surplus
On glibc, lsan requires the range to include
`pthread::{specific_1stblock,specific}` so that allocations only referenced by
`pthread_setspecific` can be scanned.
This patch uses `dl_iterate_phdr` to collect TLS ranges. Find the one
with `dlpi_tls_modid==1` as one of the initially loaded module, then find
consecutive ranges. The boundaries give us addr and size.
This allows us to drop the glibc internal `_dl_get_tls_static_info` and
`InitTlsSize` entirely. Use the simplified method with non-Android Linux for
now, but in theory this can be used with *BSD and potentially other ELF OSes.
In the future, we can move `ThreadDescriptorSize` code to lsan (and consider
intercepting `pthread_setspecific`) to avoid hacks in generic code.
See https://reviews.llvm.org/D93972#2480556 for analysis on GetTls usage
across various sanitizers.
Differential Revision: https://reviews.llvm.org/D98926