This patch updates the translation of `omp.wsloop` with a nested
`omp.simd` to prevent uses of block arguments defined by the latter from
triggering null pointer dereferences.
This happens because the inner `omp.simd` operation representing
composite `do simd` constructs is currently skipped and not translated,
but this results in block arguments defined by it not being mapped to an
LLVM value. The proposed solution is to map these block arguments to the
LLVM value associated to the corresponding operand, which is defined
above.
Recently, we added an intrinsic for the elect.sync PTX instruction (PR
104780). This patch updates the corresponding Op in NVVM Dialect
to lower to the intrinsic instead of inline-ptx.
The existing test under Conversion/ is migrated to check for the new
pattern. A separate test is added to verify the lowered intrinsic under
the Target/ directory.
Signed-off-by: Durgadoss R <durgadossr@nvidia.com>
Extends `nowait` support for other device directives. This PR refactors
the task generation utils used for the `target` directive so that they
are general enough to be reused for other device directives as well.
This commit adds support for the following PTX predefined special
registers
* warpid
* nwarpid
* smid
* nsmid
* gridid
* lanemask.*
* globaltimer
* envreg* And added lit tests under nvvmir.mlir
The existing conversion inlined private alloc regions and firstprivate
copy regions in mlir, then undoing the modification of the mlir module
before completing the conversion. To make this work, LLVM IR had to be
generated using the wrong mapping for privatised values and then later
fixed inside of OpenMPIRBuilder.
This approach violated an assumption in OpenMPIRBuilder that private
variables would be values not constants. Flang sometimes generates code
where private variables are promoted to globals, the address of which is
treated as a constant in LLVM IR. This caused the incorrect values for
the private variable from being replaced by OpenMPIRBuilder: ultimately
resulting in programs producing incorrect results.
This patch rewrites delayed privatisation for omp.parallel to work more
similarly to reductions: translating directly into LLVMIR with correct
mappings for private variables.
RFC:
https://discourse.llvm.org/t/rfc-openmp-fix-issue-in-mlir-to-llvmir-translation-for-delayed-privatisation/81225
Tested against the gfortran testsuite and our internal test suite.
Linaro's post-commit bots will check against the fujitsu test suite.
I decided to add the new tests as flang integration tests rather than in
mlir/test/Target/LLVMIR:
- The regression test is for an issue filed against flang. i wanted to
keep the reproducer similar to the code in the ticket.
- I found the "worst case" CFG test difficult to reason about in
abstract it helped me to think about what was going on in terms of a
Fortran program.
Fixes#106297
This patch adds operand bundle support for `llvm.intr.assume`.
This patch actually contains two parts:
- `llvm.intr.assume` now accepts operand bundle related attributes and
operands. `llvm.intr.assume` does not take constraint on the operand
bundles, but obviously only a few set of operand bundles are meaningful.
I plan to add some of those (e.g. `aligned` and `separate_storage` are
what interest me but other people may be interested in other operand
bundles as well) in future patches.
- The definitions of `llvm.call`, `llvm.invoke`, and
`llvm.call_intrinsic` actually define `op_bundle_tags` as an operation
property. It turns out this approach would introduce some unnecessary
burden if applied equally to the intrinsic operations because properties
are not available through `Operation *` but we have to operate on
`Operation *` during the import/export of intrinsics, so this PR changes
it from a property to an array attribute.
This patch relands commit d8fadad07c.
This patch adds operand bundle support for `llvm.intr.assume`.
This patch actually contains two parts:
- `llvm.intr.assume` now accepts operand bundle related attributes and
operands. `llvm.intr.assume` does not take constraint on the operand
bundles, but obviously only a few set of operand bundles are meaningful.
I plan to add some of those (e.g. `aligned` and `separate_storage` are
what interest me but other people may be interested in other operand
bundles as well) in future patches.
- The definitions of `llvm.call`, `llvm.invoke`, and
`llvm.call_intrinsic` actually define `op_bundle_tags` as an operation
property. It turns out this approach would introduce some unnecessary
burden if applied equally to the intrinsic operations because properties
are not available through `Operation *` but we have to operate on
`Operation *` during the import/export of intrinsics, so this PR changes
it from a property to an array attribute.
This PR adds missing `sched.group.barrier` and `rocdl.iglp.opt` ops to
the ROCDL dialect (see
[here](ec78f0da0e/clang/include/clang/Basic/BuiltinsAMDGPU.def (L66-L68))).
The ops are converted to the corresponding intrinsic calls during the
translation from MLIR to LLVM IRs. This intrinsics are hints to the
instruction scheduler of the AMDGPU backend.
Adds MLIR to LLVM lowering support for `target ... nowait`. This
leverages the already existings code-gen patterns for `task` by treating
`target ... nowait` as `task ... if(1)` and `target` (without `nowait`)
as `task ... if(0)`; similar to what clang does.
This patch simplifies the representation of OpenMP loop wrapper
operations by introducing the `NoTerminator` trait and updating
accordingly the verifier for the `LoopWrapperInterface`.
Since loop wrappers are already limited to having exactly one region
containing exactly one block, and this block can only hold a single
`omp.loop_nest` or loop wrapper and an `omp.terminator` that does not
return any values, it makes sense to simplify the representation of loop
wrappers by removing the terminator.
There is an extensive list of Lit tests that needed updating to remove
the `omp.terminator`s adding some noise to this patch, but actual
changes are limited to the definition of the `omp.wsloop`, `omp.simd`,
`omp.distribute` and `omp.taskloop` loop wrapper ops, Flang lowering for
those, `LoopWrapperInterface::verifyImpl()`, SCF to OpenMP conversion
and OpenMP dialect documentation.
The underlying issue was caused by a file included in two different
places which resulted in duplicate definition errors when linking
individual shared libraries. This was fixed in c3201ddaea
[#109874].
Currently, we allow only one DIGlobalVariableExpressionAttr per global.
It is especially evident in import where we pick the first from the list
and ignore the rest. In contrast, LLVM allows multiple
DIGlobalVariableExpression to be attached to the global. They are needed
for correct working of things like DICommonBlock. This PR removes this
restriction in mlir. Changes are mostly mechanical. One thing on which I
went a bit back and forth was the representation inside GlobalOp. I
would be happy to change if there are better ways to do this.
---------
Co-authored-by: Tobias Gysi <tobias.gysi@nextsilicon.com>
A COMMON block is a named area of memory that holds a collection of
variables. Fortran subprograms may map the COMMON block memory area to a
list of variables. A common block is represented in LLVM debug by
DICommonBlock.
This PR adds support for this in MLIR. The changes are mostly mechanical
apart from small change to access the DICompileUnit when the scope of
the variable is DICommonBlock.
---------
Co-authored-by: Tobias Gysi <tobias.gysi@nextsilicon.com>
While working with `emitc::SwitchOp`, it was identified that
`mlir-translate` emits **invalid C code** for switch.
This commit fixes the issue with the closing bracket in `CppEmitter`
within `printOperation` for `emitc::SwitchOp`.
This commit fixes a bug in the import of nameless globals. Before this
change, the fake symbol names were only generated during the
transformation of the definition. This caused issues when the symbol was
used before it was defined.
This commit addresses an issue with importing globals that reference
other globals. This case did not properly work due to not considering
that `llvm::GlobalVariables` are derived from `llvm::Constant`.
The LLVM backend has moved from function-wide attributes for making
assurances about potentially unsafe atomic operations (like
"unsafe-fp-atomics") to metadata on individual atomic operations.
This commit adds support for generating this metadata from MLIR.
---------
Co-authored-by: Quinn Dawkins <quinn.dawkins@gmail.com>
LLVM already supports `DW_TAG_LLVM_annotation` entries for subprograms,
but this hasn't been surfaced to the LLVM dialect.
I'm doing the minimal amount of work to support string-based
annotations, which is useful for attaching metadata to
functions, which is useful for debuggers to offer features beyond basic
DWARF.
As LLVM already supports this, this patch is not controversial.
This PR adds `f8E8M0FNU` type to MLIR.
`f8E8M0FNU` type is proposed in [OpenCompute MX
Specification](https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf).
It defines a 8-bit floating point number with bit layout S0E8M0. Unlike
IEEE-754 types, there are no infinity, denormals, zeros or negative
values.
```c
f8E8M0FNU
- Exponent bias: 127
- Maximum stored exponent value: 254 (binary 1111'1110)
- Maximum unbiased exponent value: 254 - 127 = 127
- Minimum stored exponent value: 0 (binary 0000'0000)
- Minimum unbiased exponent value: 0 − 127 = -127
- Doesn't have zero
- Doesn't have infinity
- NaN is encoded as binary 1111'1111
Additional details:
- Zeros cannot be represented
- Negative values cannot be represented
- Mantissa is always 1
```
Related PRs:
- [PR-107127](https://github.com/llvm/llvm-project/pull/107127)
[APFloat] Add APFloat support for E8M0 type
- [PR-105573](https://github.com/llvm/llvm-project/pull/105573) [MLIR]
Add f6E3M2FN type - was used as a template for this PR
- [PR-107999](https://github.com/llvm/llvm-project/pull/107999) [MLIR]
Add f6E2M3FN type
- [PR-108877](https://github.com/llvm/llvm-project/pull/108877) [MLIR]
Add f4E2M1FN type
This PR fixes `LLVM_AtomicRMWOp` allowed semantics and verifier logic to
enable building of `LLVM_AtomicRMWOp` with fixed vectors of compatible
fp values
as operands for fp rmw operation.
See also: https://llvm.org/docs/LangRef.html#id231
Signed-off-by: Ilya Veselov <iveselov.nn@gmail.com>
This patch adds functionality to emit relevant libcalls in case
atomicrmw instruction can not be emitted (for instance, in case of
complex types). The IRBuilder is modified to directly emit __atomic_load
and __atomic_compare_exchange libcalls. The added functions follow a
similar codegen path as Clang, so that LLVM Flang generates almost
similar IR as Clang.
Fixes https://github.com/llvm/llvm-project/issues/83760 and
https://github.com/llvm/llvm-project/issues/75138
Co-authored-by: Michael Kruse <llvm-project@meinersbur.de>
This patch updates the `omp.target_data` operation to use the same
formatting as `map` clauses on `omp.target` for `use_device_addr` and
`use_device_ptr`. This is done so the mapping that is being enforced
between op arguments and associated entry block arguments is explicit.
The way it is achieved is by marking these clauses as entry block
argument-defining and adjusting printer/parsers accordingly.
As a result of this change, block arguments for `use_device_addr` come
before those for `use_device_ptr`, which is the opposite of the previous
undocumented situation. Some unit tests are updated based on this
change, in addition to those updated because of the format change.
This patch updates printing and parsing of operations including clauses
that define entry block arguments to the operation's region. This
impacts `in_reduction`, `map`, `private`, `reduction` and
`task_reduction`.
The proposed representation to be used by all such clauses is the
following:
```
<clause_name>([byref] [@<sym>] %value -> %block_arg [, ...] : <type>[, ...]) {
...
}
```
The `byref` tag is only allowed for reduction-like clauses and the
`@<sym>` is required and only allowed for the `private` and
reduction-like clauses. The `map` clause does not accept any of these
two.
This change fixes some currently broken op representations, like
`omp.teams` or `omp.sections` reduction:
```
omp.teams reduction([byref] @<sym> -> %value : <type>) {
^bb0(%block_arg : <type>):
...
}
```
Additionally, it addresses some redundancy in the representation of the
previously mentioned cases, as well as e.g. `map` in `omp.target`. The
problem is that the block argument name after the arrow is not checked
in any way, which makes some misleading representations legal:
```mlir
omp.target map_entries(%x -> %arg1, %y -> %arg0, %z -> %doesnt_exist : !llvm.ptr, !llvm.ptr, !llvm.ptr) {
^bb0(%arg0 : !llvm.ptr, %arg1 : !llvm.ptr, %arg2 : !llvm.ptr):
...
}
```
In that case, `%x` maps to `%arg0`, contrary to what the representation
states, and `%z` maps to `%arg2`. `%doesnt_exist` is not resolved, so it
would likely cause issues if used anywhere inside of the operation's
region.
The solution implemented in this patch makes it so that values
introduced after the arrow on the representation of these clauses
implicitly define the corresponding entry block arguments, removing the
potential for these problematic representations. This is what is already
implemented for the `private` and `reduction` clauses of `omp.parallel`.
There are a couple of consequences of this change:
- Entry block argument-defining clauses must come at the end of the
operation's representation and in alphabetical order. This is because
they are printed/parsed as part of the region and a standardized
ordering is needed to reliably match op arguments with their
corresponding entry block arguments via the `BlockArgOpenMPOpInterface`.
- We can no longer define per-clause assembly formats to be reused by
all operations that take these clauses, since they must be passed to a
custom printer including the region and arguments of all other entry
block argument-defining clauses. Code duplication and potential for
introducing issues is minimized by providing the generic
`{print,parse}BlockArgRegion` helpers and associated structures.
MLIR and Flang lowering unit tests are updated due to changes in the
order and formatting of impacted operations.
This patch introduces a new MLIR interface for the OpenMP dialect aimed
at providing a uniform way of verifying and handling entry block
arguments defined by OpenMP clauses.
The approach consists in defining a set of overrideable methods that
return the number of block arguments the operation holds regarding each
of the clauses that may define them. These by default return 0, but they
are overriden by the corresponding clause through the
`extraClassDeclaration` mechanism.
Another set of interface methods to get the actual lists of block
arguments is defined, which is implemented based on the previously
described methods. These implicitly define a standardized ordering
between the list of block arguments associated to each clause, based on
the alphabetical ordering of their names. They should be the preferred
way of matching operation arguments and entry block arguments to that
operation's first region.
Some updates are made to the printing/parsing of `omp.parallel` to
follow the expected order between `private` and `reduction` clauses, as
well as the MLIR to LLVM IR translation pass to access block arguments
using the new interface. Unit tests of operations impacted by additional
verification checks and sorting of entry block arguments.
This patch adds support to translate the `private` clause on
`omp.target` ops from MLIR to LLVMIR. This first cut only handles
non-allocatables. Also, this is for delayed privatization.
This PR adds LLVM [operand
bundle](https://llvm.org/docs/LangRef.html#operand-bundles) support to
MLIR LLVM dialect. It affects these 3 operations related to making
function calls: `llvm.call`, `llvm.invoke`, and `llvm.call_intrinsic`.
This PR adds two new parameters to each of the 3 operations. The first
parameter is a variadic operand `op_bundle_operands` that contains the
SSA values for operand bundles. The second parameter is a property
`op_bundle_tags` which holds an array of strings that represent the tags
of each operand bundle.
This PR adds `f4E2M1FN` type to mlir.
`f4E2M1FN` type is proposed in [OpenCompute MX
Specification](https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf).
It defines a 4-bit floating point number with bit layout S1E2M1. Unlike
IEEE-754 types, there are no infinity or NaN values.
```c
f4E2M1FN
- Exponent bias: 1
- Maximum stored exponent value: 3 (binary 11)
- Maximum unbiased exponent value: 3 - 1 = 2
- Minimum stored exponent value: 1 (binary 01)
- Minimum unbiased exponent value: 1 − 1 = 0
- Has Positive and Negative zero
- Doesn't have infinity
- Doesn't have NaNs
Additional details:
- Zeros (+/-): S.00.0
- Max normal number: S.11.1 = ±2^(2) x (1 + 0.5) = ±6.0
- Min normal number: S.01.0 = ±2^(0) = ±1.0
- Min subnormal number: S.00.1 = ±2^(0) x 0.5 = ±0.5
```
Related PRs:
- [PR-95392](https://github.com/llvm/llvm-project/pull/95392) [APFloat]
Add APFloat support for FP4 data type
- [PR-105573](https://github.com/llvm/llvm-project/pull/105573) [MLIR]
Add f6E3M2FN type - was used as a template for this PR
- [PR-107999](https://github.com/llvm/llvm-project/pull/107999) [MLIR]
Add f6E2M3FN type
Add support for the -frecord-command-line option that will produce the
llvm.commandline metadata which will eventually be saved in the object
file. This behavior is also supported in clang. Some refactoring of the
code in flang to handle these command line options was carried out. The
corresponding -grecord-command-line option which saves the command line
in the debug information has not yet been enabled for flang.
This PR adds `f6E2M3FN` type to mlir.
`f6E2M3FN` type is proposed in [OpenCompute MX
Specification](https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf).
It defines a 6-bit floating point number with bit layout S1E2M3. Unlike
IEEE-754 types, there are no infinity or NaN values.
```c
f6E2M3FN
- Exponent bias: 1
- Maximum stored exponent value: 3 (binary 11)
- Maximum unbiased exponent value: 3 - 1 = 2
- Minimum stored exponent value: 1 (binary 01)
- Minimum unbiased exponent value: 1 − 1 = 0
- Has Positive and Negative zero
- Doesn't have infinity
- Doesn't have NaNs
Additional details:
- Zeros (+/-): S.00.000
- Max normal number: S.11.111 = ±2^(2) x (1 + 0.875) = ±7.5
- Min normal number: S.01.000 = ±2^(0) = ±1.0
- Max subnormal number: S.00.111 = ±2^(0) x 0.875 = ±0.875
- Min subnormal number: S.00.001 = ±2^(0) x 0.125 = ±0.125
```
Related PRs:
- [PR-94735](https://github.com/llvm/llvm-project/pull/94735) [APFloat]
Add APFloat support for FP6 data types
- [PR-105573](https://github.com/llvm/llvm-project/pull/105573) [MLIR]
Add f6E3M2FN type - was used as a template for this PR
Update the GPU to NVVM lowerings to correctly propagate range
information on IDs and dimension queries, etiher from
known_{block,grid}_size attributes or from `upperBound` annotations on
the operations themselves.
This commit introduces a ConstantRange attribute to match the
ConstantRange attribute type present in LLVM IR.
It then refactors the LLVM_IntrOpBase so that the basic part of the
intrinsic builder code can be re-used without needing to copy it or
get rid of important context. This, along with adding code for
handling an optional `range` attribute to that same base, allows us to
make the support for range() annotations generic without adding
another bit to IntrOpBase.
This commit then updates the lowering of index intrinsic operations to
use the new ConstantRange attribute and fixes a bug (where we'd be
subtracting 1 from upper bounds instead of adding it on operations
like gpu.block_dim) along the way.
The point of these changes is to enable these range annotations to be
used for the corresponding NVVM operations in a future commit.
This PR adds `f6E3M2FN` type to mlir.
`f6E3M2FN` type is proposed in [OpenCompute MX
Specification](https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf).
It defines a 6-bit floating point number with bit layout S1E3M2. Unlike
IEEE-754 types, there are no infinity or NaN values.
```c
f6E3M2FN
- Exponent bias: 3
- Maximum stored exponent value: 7 (binary 111)
- Maximum unbiased exponent value: 7 - 3 = 4
- Minimum stored exponent value: 1 (binary 001)
- Minimum unbiased exponent value: 1 − 3 = −2
- Has Positive and Negative zero
- Doesn't have infinity
- Doesn't have NaNs
Additional details:
- Zeros (+/-): S.000.00
- Max normal number: S.111.11 = ±2^(4) x (1 + 0.75) = ±28
- Min normal number: S.001.00 = ±2^(-2) = ±0.25
- Max subnormal number: S.000.11 = ±2^(-2) x 0.75 = ±0.1875
- Min subnormal number: S.000.01 = ±2^(-2) x 0.25 = ±0.0625
```
Related PRs:
- [PR-94735](https://github.com/llvm/llvm-project/pull/94735) [APFloat]
Add APFloat support for FP6 data types
- [PR-97118](https://github.com/llvm/llvm-project/pull/97118) [MLIR] Add
f8E4M3 type - was used as a template for this PR
This patch updates the use_device_ptr and use_device_addr clauses to use
the mapInfoOps for lowering. This allows all the types that are handle
by the map clauses such as derived types to also be supported by the
use_device_clauses.
This is patch 2/2 in a series of patches.
When an outlined function is generated for omp target region, a
corresponding DISubprogram was not being generated. This resulted in all
the debug information for the target region being dropped.
This commit adds DISubprogram for the outlined function if there is one
available for the parent function. It also updates the current debug
location so that the right scope is used for the entries in the outlined
function.
There are places in the OpenMPIRBuilder which changes insertion point but
don't update the debug location accordingly. They cause issue when debug info
is enabled. I have fixed a few that I observed to cause issue. But there may be
more and a systematic cleanup may be required.
With this change in place, I can set source line breakpoint in target
region and run to them in debugger.
This reverts commit fa93be4, restoring
commit d884b77, with fixes that ensure the CAPI declarations are
exported properly.
This commit implements LLVM_DIRecursiveTypeAttrInterface for the
DISubprogramAttr to ensure cyclic subprograms can be imported properly.
In the process multiple shortcuts around the recently introduced
DIImportedEntityAttr can be removed.
This commit implements LLVM_DIRecursiveTypeAttrInterface for the
DISubprogramAttr to ensure cyclic subprograms can be imported properly.
In the process multiple shortcuts around the recently introduced
DIImportedEntityAttr can be removed.