Summary: The patch D81022 seems to break the indentation of the `cleanupIR()` function. This patch fixes this problem
Reviewers: jdoerfert, sstefan1, uenoku
Reviewed By: jdoerfert
Subscribers: hiraditya, uenoku, kuter, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82260
Summary:
This patch splits the Attributor::run() function into multiple
functions.
Simple Logic changes to make this possible:
# Moved iteration count verification earlier.
# NumFinalAAs get set a little bit later.
Reviewers: jdoerfert, sstefan1, uenoku
Reviewed By: jdoerfert
Subscribers: hiraditya, uenoku, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81022
Summary:
This patch splits the Attributor::run() function into multiple functions.
Simple Logic changes to make this possible:
# Moved iteration count verification earlier.
# NumFinalAAs get set a little bit later.
Reviewers: jdoerfert, sstefan1, uenoku
Reviewed By: jdoerfert
Subscribers: hiraditya, uenoku, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81022
Remove the function Instruction::setProfWeight() and make
use of Instruction::copyMetadata(.., {LLVMContext::MD_prof}).
This is correct for all use cases of setProfWeight() as it
is applied to CallBase instructions only.
This change results in prof metadata copied intact even if
the source has "VP". The old pair of calls
extractProfTotalWeight() + setProfWeight() resulted in
setting branch_weights if the source had "VP" data.
Reviewers: yamauchi, davidxl
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80987
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Reverted due to unexpectedly passing tests, added REQUIRES: asserts for reland.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
We will now ensure ensure the return type of called function is the type
of all call sites we are going to rewrite. This avoids a problem
partially fixed by D79680. The part that was not covered is a use of
this "weird" casted call site (see `@func3` in `misc_crash.ll`).
misc_crash.ll checks are auto-generated now.
The old QuerriedAAs contained two vectors, one for required one for
optional dependences (=queries). We now use a single vector and encode
the kind directly in the pointer.
This reduces memory consumption and makes the connection between
abstract attributes and their dependences clearer.
No functional change is intended, changes in the test are due to
different order in the query map. Neither the order before nor now is in
any way special.
---
Single run of the Attributor module and then CGSCC pass (oldPM)
for SPASS/clause.c (~10k LLVM-IR loc):
Before:
```
calls to allocation functions: 543734 (329735/s)
temporary memory allocations: 105895 (64217/s)
peak heap memory consumption: 19.19MB
peak RSS (including heaptrack overhead): 102.26MB
total memory leaked: 269.10KB
```
After:
```
calls to allocation functions: 513292 (341511/s)
temporary memory allocations: 106028 (70544/s)
peak heap memory consumption: 13.35MB
peak RSS (including heaptrack overhead): 95.64MB
total memory leaked: 269.10KB
```
Difference:
```
calls to allocation functions: -30442 (208506/s)
temporary memory allocations: 133 (-910/s)
peak heap memory consumption: -5.84MB
peak RSS (including heaptrack overhead): 0B
total memory leaked: 0B
```
---
Reviewed By: uenoku
Differential Revision: https://reviews.llvm.org/D78729
In a recent patch we introduced a problem with abstract attributes that
were assumed dead at some point. Since `Attributor::updateAA` was
introduced in 95e0d28b71, we did not
remember the dependence on the liveness AA when an abstract attribute
was assumed dead and therefore not updated.
Explicit reproducer added in liveness.ll.
---
Single run of the Attributor module and then CGSCC pass (oldPM)
for SPASS/clause.c (~10k LLVM-IR loc):
Before:
```
calls to allocation functions: 509242 (345483/s)
temporary memory allocations: 98666 (66937/s)
peak heap memory consumption: 18.60MB
peak RSS (including heaptrack overhead): 103.29MB
total memory leaked: 269.10KB
```
After:
```
calls to allocation functions: 529332 (355494/s)
temporary memory allocations: 102107 (68574/s)
peak heap memory consumption: 19.40MB
peak RSS (including heaptrack overhead): 102.79MB
total memory leaked: 269.10KB
```
Difference:
```
calls to allocation functions: 20090 (1339333/s)
temporary memory allocations: 3441 (229400/s)
peak heap memory consumption: 801.45KB
peak RSS (including heaptrack overhead): 0B
total memory leaked: 0B
```
Before we eagerly put dependences into the QueryMap as soon as we
encountered them (via `Attributor::getAAFor<>` or
`Attributor::recordDependence`). Now we will wait to see if the
dependence is useful, that is if the target is not already in a fixpoint
state at the end of the update. If so, there is no need to record the
dependence at all.
Due to the abstraction via `Attributor::updateAA` we will now also treat
the very first update (during attribute creation) as we do subsequent
updates.
Finally this resolves the problematic usage of QueriedNonFixAA.
---
Single run of the Attributor module and then CGSCC pass (oldPM)
for SPASS/clause.c (~10k LLVM-IR loc):
Before:
```
calls to allocation functions: 554675 (389245/s)
temporary memory allocations: 101574 (71280/s)
peak heap memory consumption: 28.46MB
peak RSS (including heaptrack overhead): 116.26MB
total memory leaked: 269.10KB
```
After:
```
calls to allocation functions: 512465 (345559/s)
temporary memory allocations: 98832 (66643/s)
peak heap memory consumption: 22.54MB
peak RSS (including heaptrack overhead): 106.58MB
total memory leaked: 269.10KB
```
Difference:
```
calls to allocation functions: -42210 (-727758/s)
temporary memory allocations: -2742 (-47275/s)
peak heap memory consumption: -5.92MB
peak RSS (including heaptrack overhead): 0B
total memory leaked: 0B
```
If we have a dependence between an abstract attribute A to an abstract
attribute B such hat changes in A should trigger an update of B, we do
not need to keep the dependence around once the update was triggered. If
the dependence is still required the update will reinsert it into the
dependence map, if it is not we avoid triggering B in the future. This
replaces the "recompute interval" mechanism we used before to prune
stale dependences.
Number of required iterations is generally down, compile time for the
module pass (not really the CGSCC pass) is down quite a bit.
There is one test change which looks like an artifact in the undefined
behavior AA that needs to be looked at.
We now also use the BumpPtrAllocator from the Attributor in the
InformationCache. The lifetime of objects in either is pretty much the
same and it should result in consistently good performance regardless of
the allocator.
Doing so requires to call more constructors manually but so far that
does not seem to be problematic or messy.
---
Single run of the Attributor module and then CGSCC pass (oldPM)
for SPASS/clause.c (~10k LLVM-IR loc):
Before:
```
calls to allocation functions: 615359 (368257/s)
temporary memory allocations: 83315 (49859/s)
peak heap memory consumption: 75.64MB
peak RSS (including heaptrack overhead): 163.43MB
total memory leaked: 269.04KB
```
After:
```
calls to allocation functions: 613042 (359555/s)
temporary memory allocations: 83322 (48869/s)
peak heap memory consumption: 75.64MB
peak RSS (including heaptrack overhead): 162.92MB
total memory leaked: 269.04KB
```
Difference:
```
calls to allocation functions: -2317 (-68147/s)
temporary memory allocations: 7 (205/s)
peak heap memory consumption: 2.23KB
peak RSS (including heaptrack overhead): 0B
total memory leaked: 0B
---
There are also some adjustments to use MaybeAlign in here due
to CallBase::getParamAlignment() being deprecated. It would
be cleaner if getOrEnforceKnownAlignment was migrated
to Align/MaybeAlign.
Differential Revision: https://reviews.llvm.org/D78345
CallSite will likely be removed soon, but AbstractCallSite serves a different purpose and won't be going away.
This patch switches it to internally store a CallBase* instead of a
CallSite. The only interface changes are the removal of the getCallSite
method and getCallBackUses now takes a CallBase&. These methods had only
a few callers that were easy enough to update without needing a
compatibility shim.
In the future once the other CallSites are gone, the CallSite.h
header should be renamed to AbstractCallSite.h
Differential Revision: https://reviews.llvm.org/D78322
Since we use the fact that some uses are droppable in the Attributor we
need to handle them explicitly when we replace uses. As an example, an
assumed dead value can have live droppable users. In those we cannot
replace the value simply by an undef. Instead, we either drop the uses
(via `dropDroppableUses`) or keep them as they are. In this patch we do
both, depending on the situation. For values that are dead but not
necessarily removed we keep droppable uses around because they contain
information we might be able to use later. For values that are removed
we drop droppable uses explicitly to avoid replacement with undef.
Running the verifier is expensive so we want to avoid it even in runs
that enable assertions. As we move closer to enabling the Attributor
this code will be executed by some buildbots but not cause overhead for
most people.
Before, we eagerly analyzed all the functions to collect information
about them, e.g. what instructions may read/write memory. This had
multiple drawbacks:
- In CGSCC-mode we can end up looking at a callee which is not in the
SCC but for which we need an initialized cache.
- We end up looking at functions that we deem dead and never need to
analyze in the first place.
- We have a implicit dependence which is easy to break.
This patch moves the function analysis into the information cache and
makes it lazy. There is no real functional change expected except due to
the first reason above.
The CallGraphUpdater allows to directly alter call site information and
we should do so. This might appease the windows buildbot that crashes
during the SCC traversal.
Attributor.cpp became quite big and we need to start provide structure.
The Attributor code is now in Attributor.cpp and the classes derived
from AbstractAttribute are in AttributorAttributes.cpp. Minor changes
were required but no intended functional changes.
We also minimized includes as part of this.
Reviewed By: baziotis
Differential Revision: https://reviews.llvm.org/D76873
The new and old pass managers (PassManagerBuilder.cpp and
PassBuilder.cpp) are exposed to an `extern` declaration of
`attributor-disable` option which will guard the addition of the
attributor passes to the pass pipelines.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D76871
Query AAValueSimplify on pointers in memory accessing instructions to take
advantage of the constant propagation (or any other value simplification) of such values.
There was a TODO in genericValueTraversal to provide the context
instruction and due to the lack of it users that wanted one just used
something available. Unfortunately, using a fixed instruction is wrong
in the presence of PHIs so we need to update the context instruction
properly.
Reviewed By: uenoku
Differential Revision: https://reviews.llvm.org/D76870
This cannot be triggered right now, as far as I know, but it doesn't
make sense to deduce a constant range on arguments of declarations.
Exposed during testing of AAValueSimplify extensions.
Use DL & ABI information for better alignment deduction, e.g., if a type
is accessed and the ABI specifies an alignment requirement for such an
access we can use it. This is based on a patch by @lebedev.ri and
inspired by getBaseAlign in Loads.cpp.
Depends on D76673.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D76674
If we have a must-tail call the callee and caller need to have matching
ABIs. Part of that is alignment which we might modify when we deduce
alignment of arguments of either. Since we would need to keep them in
sync, which is not as simple, we simply avoid deducing alignment for
arguments of the must-tail caller or callee.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D76673
We create a lot of AbstractAttributes and they live as long as
the Attributor does. It seems reasonable to allocate them via a
BumpPtrAllocator owned by the Attributor.
Reviewed By: baziotis
Differential Revision: https://reviews.llvm.org/D76589