This is probably a bigger limitation than necessary, but since we don't have any evidence yet
that this transform led to real-world perf improvements rather than regressions, I'm making a
quick, blunt fix.
In the motivating x86 example from:
https://bugs.llvm.org/show_bug.cgi?id=41129
...and shown in the regression test, we want to avoid an extra instruction in the dominating
block because that could be costly.
The x86 LSR test diff is reversing the changes from D57789. There's no evidence that 1 version
is any better than the other yet.
Differential Revision: https://reviews.llvm.org/D59602
llvm-svn: 356665
This is almost the same as:
rL355345
...and should prevent any potential crashing from examples like:
https://bugs.llvm.org/show_bug.cgi?id=41064
...although the bug was masked by:
rL355823
...and I'm not sure how to repro the problem after that change.
llvm-svn: 356218
Targets can potentially emit more efficient code if they know address
computations never overflow. For example ILP32 code on AArch64 (which only has
64-bit address computation) can ignore the possibility of overflow with this
extra information.
llvm-svn: 355926
Inserting an overflowing arithmetic intrinsic can increase register
pressure by producing two values at a point where only one is needed,
while the second use maybe several blocks away. This increase in
pressure is likely to be more detrimental on performance than
rematerialising one of the original instructions.
So, check that the arithmetic and compare instructions are no further
apart than their immediate successor/predecessor.
Differential Revision: https://reviews.llvm.org/D59024
llvm-svn: 355823
r44412 fixed a huge compile time regression but it needed ModifiedDT flag to be
maintained correctly in optimizations in optimizeBlock() and optimizeInst().
Function optimizeSelectInst() does not update the flag.
This patch propagates the flag in optimizeSelectInst() back to
optimizeBlock().
This patch also removes ModifiedDT in CodeGenPrepare class (which is not used).
The property of ModifiedDT is now recorded in a ref parameter.
Differential Revision: https://reviews.llvm.org/D59139
llvm-svn: 355751
This uses the infrastructure added in rL353152 to sink zext and sexts to
sub/add users, to enable vsubl/vaddl generation when NEON is available.
See https://bugs.llvm.org/show_bug.cgi?id=40025.
Reviewers: SjoerdMeijer, t.p.northover, samparker, efriedma
Reviewed By: samparker
Differential Revision: https://reviews.llvm.org/D58063
llvm-svn: 355460
The test is reduced from an example in the post-commit thread for:
rL354746
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20190304/632396.html
While we must avoid dying here, the real question should be:
Why is non-canonical and/or degenerate code making it to CGP when
using the new pass manager?
llvm-svn: 355345
There's likely a missed IR canonicalization for at least 1 of these
patterns. Otherwise, we wouldn't have needed the pattern-matching
enhancement in D57516.
Note that -- unlike usubo added with D57789 -- the TLI hook for
this transform defaults to 'on'. So if there's any perf fallout
from this, targets should look at how they're lowering the uaddo
node in SDAG and/or override that hook.
The x86 diffs suggest that there's some missing pattern-matching
for forming inc/dec.
This should fix the remaining known problems in:
https://bugs.llvm.org/show_bug.cgi?id=40486https://bugs.llvm.org/show_bug.cgi?id=31754
llvm-svn: 354746
The motivating x86 cases for forming the intrinsic are shown in PR31754 and PR40487:
https://bugs.llvm.org/show_bug.cgi?id=31754https://bugs.llvm.org/show_bug.cgi?id=40487
..and those are shown in the IR test file and x86 codegen file.
Matching the usubo pattern is harder than uaddo because we have 2 independent values rather than a def-use.
This adds a TLI hook that should preserve the existing behavior for uaddo formation, but disables usubo
formation by default. Only x86 overrides that setting for now although other targets will likely benefit
by forming usbuo too.
Differential Revision: https://reviews.llvm.org/D57789
llvm-svn: 354298
This patch improves code generation for some AArch64 ACLE intrinsics. It adds
support to CGP to duplicate and sink operands to their user, if they can be
folded into a target instruction, like zexts and sub into usubl. It adds a
TargetLowering hook shouldSinkOperands, which looks at the operands of
instructions to see if sinking is profitable.
I decided to add a new target hook, as for the sinking to be profitable,
at least on AArch64, we have to look at multiple operands of an
instruction, instead of looking at the users of a zext for example.
The sinking is done in CGP, because it works around an instruction
selection limitation. If instruction selection is not limited to a
single basic block, this patch should not be needed any longer.
Alternatively this could be done in the LoopSink pass, which tries to
undo LICM for instructions in blocks that are not executed frequently.
Note that we do not force the operands to sink to have a single user,
because we duplicate them before sinking. Therefore this is only
desirable if they really can be done for free. Additionally we could
consider the impact on live ranges later on.
This should fix https://bugs.llvm.org/show_bug.cgi?id=40025.
As for performance, we have internal code that uses intrinsics and can
be speed up by 10% by this change.
Reviewers: SjoerdMeijer, t.p.northover, samparker, efriedma, RKSimon, spatel
Reviewed By: samparker
Differential Revision: https://reviews.llvm.org/D57377
llvm-svn: 353152
This is no-functional-change-intended although there could
be intermediate variations caused by a difference in the
debug info produced by setting that from the builder's
insertion point.
I'm updating the IR test file associated with this code just
to show that the naming differences from using the builder
are visible.
The motivation for adding a helper function is that we are
likely to extend this code to deal with other overflow ops.
llvm-svn: 353056
There are 2 changes visible here:
1. There's no reason to limit this transform based on number
of condition registers. That diff allows PPC to produce
slightly better (dot-instructions should be generally good)
code.
Note: someone that cares about PPC codegen might want to
look closer at that output because it seems like we could
still improve this.
2. We (probably?) should not bother trying to form uaddo (or
other overflow ops) when there's no target support for such
an op. This goes beyond checking whether the op is expanded
because both PPC and AArch64 show better codegen for standard
types regardless of whether the op is legal/custom.
llvm-svn: 353001
This is the most important uaddo problem mentioned in PR31754:
https://bugs.llvm.org/show_bug.cgi?id=31754
...but that was overcome in x86 codegen with D57637.
That patch also corrects the inc vs. add regressions seen with the previous attempt at this.
Still, we want to make this matcher complete, so we can potentially canonicalize the pattern
even if it's an 'add 1' operation.
Pattern matching, however, shouldn't assume that we have canonicalized IR, so we match 4
commuted variants of uaddo.
There's also a test with a crazy type to show that the existing CGP transform based on this
matcher is not limited by target legality checks.
I'm not sure if the Hexagon diff means the test is no longer testing what it intended to
test, but that should be solvable in a follow-up.
Differential Revision: https://reviews.llvm.org/D57516
llvm-svn: 352998
This ensures that if we make it to the backend w/o lowering widenable_conditions first, that we generate correct code. Doing it in CGP - instead of isel - let's us fold control flow before hitting block local instruction selection.
Differential Revision: https://reviews.llvm.org/D57473
llvm-svn: 352779
This is the most important uaddo problem mentioned in PR31754:
https://bugs.llvm.org/show_bug.cgi?id=31754
We were failing to match the canonicalized pattern when it's an 'add 1' operation.
Pattern matching, however, shouldn't assume that we have canonicalized IR, so we
match 4 commuted variants of uaddo.
There's also a test with a crazy type to show that the existing CGP transform
based on this matcher is not limited by target legality checks, but that's a
different problem.
Differential Revision: https://reviews.llvm.org/D57516
llvm-svn: 352766
This change reverts r351626.
The changes in r351626 cause quadratic work in several cases. (See r351626 thread on llvm-commits for details.)
llvm-svn: 352722
This is meant to be used with clang's __builtin_dynamic_object_size.
When 'true' is passed to this parameter, the intrinsic has the
potential to be folded into instructions that will be evaluated
at run time. When 'false', the objectsize intrinsic behaviour is
unchanged.
rdar://32212419
Differential revision: https://reviews.llvm.org/D56761
llvm-svn: 352664
This reverts commit r351618.
Compiler RT + ASAN tests are failing for PowerPC. Not sure
how would I reproduce these on macOS, so reverting (again)
until I do.
llvm-svn: 351619
Make sure CodeGenPrepare doesn't emit multiple inttoptr instructions of
the same integer value while sinking address computations, but rather
CSEs them on the fly: excessive inttoptr's confuse SCEV into thinking
that related pointers have nothing to do with each other.
This problem blocks LoadStoreVectorizer from vectorizing some of the
loads / stores in a downstream target.
Reviewed By: hfinkel
Differential Revision: https://reviews.llvm.org/D56838
llvm-svn: 351582
compiler identification lines in test-cases.
(Doing so only because it's then easier to search for references which
are actually important and need fixing.)
llvm-svn: 351200
Creating the IR builder, then modifying the CFG, leads to an IRBuilder
where the BB and insertion point are inconsistent, so new instructions
have the wrong parent.
Modified an existing test because the test wasn't covering anything
useful (the "invoke" was not actually an invoke by the time we hit the
code in question).
Differential Revision: https://reviews.llvm.org/D55729
llvm-svn: 349693
ProfileSampleAccurate is used to indicate the profile has exact match to the
code to be optimized.
Previously ProfileSampleAccurate is handled in ProfileSummaryInfo::isColdCallSite
and ProfileSummaryInfo::isColdBlock. A better solution is to initialize function
entry count to 0 when ProfileSampleAccurate is true, so we don't have to handle
ProfileSampleAccurate in multiple places.
Differential Revision: https://reviews.llvm.org/D55660
llvm-svn: 349088
For SampleFDO, when a callsite doesn't appear in the profile, it will not be marked as cold callsite unless the option -profile-sample-accurate is specified.
But profile-sample-accurate doesn't cover function isFunctionColdInCallGraph which is used to decide whether a function should be put into text.unlikely section, so even if the user knows the profile is accurate and specifies profile-sample-accurate, those functions not appearing in the sample profile are still not be put into text.unlikely section right now.
The patch fixes that.
Differential Revision: https://reviews.llvm.org/D55567
llvm-svn: 348940
Summary:
Large GEP splitting, introduced in rL332015, uses a `DenseMap<AssertingVH<Value>, ...>`. This causes an assertion to fail (in debug builds) or undefined behaviour to occur (in release builds) when a value is RAUWed.
This manifested itself in the 7zip benchmark from the llvm test suite built on ARM with `-fstrict-vtable-pointers` enabled while RAUWing invariant group launders and splits in CodeGenPrepare.
This patch merges the large offsets of the argument and the result of an invariant.group strip/launder intrinsic before RAUWing.
Reviewers: Prazek, javed.absar, haicheng, efriedma
Reviewed By: Prazek, efriedma
Subscribers: kristof.beyls, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D51936
llvm-svn: 344802
Adding NonNull as attributes to returned pointers has the unfortunate side
effect of disabling tail calls. This patch ignores the NonNull attribute when
we decide whether to tail merge, in the same way that we ignore the NoAlias
attribute, as it has no affect on the call sequence.
Differential Revision: https://reviews.llvm.org/D52238
llvm-svn: 343091
CodeGenPrepare has a transform that sinks {lshr, trunc} pairs to make it
easier for the backend to emit fancy extract-bits instructions (e.g UBFX).
Teach it to preserve debug locations and salvage debug values.
llvm-svn: 342319
The output of splitLargeGEPOffsets does not appear to be deterministic because
of the way that we iterate over a DenseMap. I've changed it to a MapVector for
consistent output.
The test here isn't particularly great, only showing a consmetic difference in
output. The original reproducer is much larger but show a diffierence in
instruction ordering, leading to different codegen.
Differential Revision: https://reviews.llvm.org/D51851
llvm-svn: 342043
It has essentially the same benefit it has on 64-bit ARM: it
substantially reduces the number of constants used by large GEP
operations. Seems to be generally helpful across a few different
codebases I've tried.
Differential Revision: https://reviews.llvm.org/D51462
llvm-svn: 341136
CodeGenPrepare has a strategy for moving dbg.values so that a value's
definition always dominates its debug users. This cleanup was happening
too early (before certain CGP transforms were run), resulting in some
dbg.value use-before-def errors.
Perform this cleanup as late as possible to avoid use-before-def.
llvm-svn: 340370
This test shows that optimizeSelectInst splits a select and sinks a
`fdiv` operation to one side of the diamond. However, the dbg.value for
the operation isn't moved.
llvm-svn: 340369
This patch fixes PR38125.
Instruction extension types are recorded in PromotedInsts, it can be used later in function canGetThrough. If an instruction has two users with different extension types, it will be inserted into PromotedInsts two times in function promoteOperandForOther. The second one overwrites the first one, and the final extension type is wrong, later causes problem in canGetThrough.
This patch changes the simple bool extension type to 2-bit enum type, add a BothExtension type in addition to zero/sign extension. When an user sees BothExtension for an instruction, it actually knows nothing about how that instruction is extended.
Differential Revision: https://reviews.llvm.org/D49512
llvm-svn: 339822
In non-zero address spaces, we were reporting that an object at `null`
always occupies zero bytes. This is incorrect in many cases, so just
return `unknown` in those cases for now.
Differential Revision: https://reviews.llvm.org/D48860
llvm-svn: 336611