Add a method that given an affine map returns another with just its unique
results. Use this to drop redundant bounds in max/min for affine.for. Update
affine.for's canonicalization pattern and createCanonicalizedForOp to use
this.
Differential Revision: https://reviews.llvm.org/D77237
Modernize/cleanup code in loop transforms utils - a lot of this code was
written prior to the currently available IR support / code style. This
patch also does some variable renames including inst -> op, comment
updates, turns getCleanupLoopLowerBound into a local function.
Differential Revision: https://reviews.llvm.org/D77175
This revision adds support for generating utilities for passes such as options/statistics/etc. that can be inferred from the tablegen definition. This removes additional boilerplate from the pass, and also makes it easier to remove the reliance on the pass registry to provide certain things(e.g. the pass argument).
Differential Revision: https://reviews.llvm.org/D76659
This will greatly simplify a number of things related to passes:
* Enables generation of pass registration
* Enables generation of boiler plate pass utilities
* Enables generation of pass documentation
This revision focuses on adding the basic structure and adds support for generating the registration for passes in the Transforms/ directory. Future revisions will add more support and move more passes over.
Differential Revision: https://reviews.llvm.org/D76656
Add missing assert checks for input to mlir::interchangeLoops utility.
Rename interchangeLoops -> permuteLoops; update doc comments to clarify
inputs / return val. Other than the assert checks, this is NFC.
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D77003
This patch introduces a utility to separate full tiles from partial
tiles when tiling affine loop nests where trip counts are unknown or
where tile sizes don't divide trip counts. A conditional guard is
generated to separate out the full tile (with constant trip count loops)
into the then block of an 'affine.if' and the partial tile to the else
block. The separation allows the 'then' block (which has constant trip
count loops) to be optimized better subsequently: for eg. for
unroll-and-jam, register tiling, vectorization without leading to
cleanup code, or to offload to accelerators. Among techniques from the
literature, the if/else based separation leads to the most compact
cleanup code for multi-dimensional cases (because a single version is
used to model all partial tiles).
INPUT
affine.for %i0 = 0 to %M {
affine.for %i1 = 0 to %N {
"foo"() : () -> ()
}
}
OUTPUT AFTER TILING W/O SEPARATION
map0 = affine_map<(d0) -> (d0)>
map1 = affine_map<(d0)[s0] -> (d0 + 32, s0)>
affine.for %arg2 = 0 to %M step 32 {
affine.for %arg3 = 0 to %N step 32 {
affine.for %arg4 = #map0(%arg2) to min #map1(%arg2)[%M] {
affine.for %arg5 = #map0(%arg3) to min #map1(%arg3)[%N] {
"foo"() : () -> ()
}
}
}
}
OUTPUT AFTER TILING WITH SEPARATION
map0 = affine_map<(d0) -> (d0)>
map1 = affine_map<(d0) -> (d0 + 32)>
map2 = affine_map<(d0)[s0] -> (d0 + 32, s0)>
#set0 = affine_set<(d0, d1)[s0, s1] : (-d0 + s0 - 32 >= 0, -d1 + s1 - 32 >= 0)>
affine.for %arg2 = 0 to %M step 32 {
affine.for %arg3 = 0 to %N step 32 {
affine.if #set0(%arg2, %arg3)[%M, %N] {
// Full tile.
affine.for %arg4 = #map0(%arg2) to #map1(%arg2) {
affine.for %arg5 = #map0(%arg3) to #map1(%arg3) {
"foo"() : () -> ()
}
}
} else {
// Partial tile.
affine.for %arg4 = #map0(%arg2) to min #map2(%arg2)[%M] {
affine.for %arg5 = #map0(%arg3) to min #map2(%arg3)[%N] {
"foo"() : () -> ()
}
}
}
}
}
The separation is tested via a cmd line flag on the loop tiling pass.
The utility itself allows one to pass in any band of contiguously nested
loops, and can be used by other transforms/utilities. The current
implementation works for hyperrectangular loop nests.
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D76700
This allows conversion of a ParallelLoop from N induction variables to
some nuber of induction variables less than N.
The first intended use of this is for the GPUDialect to convert
ParallelLoops to iterate over 3 dimensions so they can be launched as
GPU Kernels.
To implement this:
- Normalize each iteration space of the ParallelLoop
- Use the same induction variable in a new ParallelLoop for multiple
original iterations.
- Split the new induction variable back into the original set of values
inside the body of the ParallelLoop.
Subscribers: mgorny, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76363
The declarations for these were already part of transforms utils, but
the definitions were left in affine transforms. Move definitions to loop
transforms utils.
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D76633
When trying to fold an operation during operation creation check that
the operation folding succeeds before inserting the op.
Differential Revision: https://reviews.llvm.org/D76415
Move some of the affine transforms and their test cases to their
respective dialect directory. This patch does not complete the move, but
takes care of a good part.
Renames: prefix 'affine' to affine loop tiling cl options,
vectorize -> super-vectorize
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D76565
Summary:
Change AffineOps Dialect structure to better group both IR and Tranforms. This included extracting transforms directly related to AffineOps. Also move AffineOps to Affine.
Differential Revision: https://reviews.llvm.org/D76161
OperationFolder::tryToFold was running the pre-replacement
action even when there was no constant folding, i.e., when the operation
was just being updated in place but was not going to be replaced. This
led to nested ops being unnecessarily removed from the worklist and only
being processed in the next outer iteration of the greedy pattern
rewriter, which is also why this didn't affect the final output IR but
only the convergence rate. It also led to an op's results' users to be
unnecessarily added to the worklist.
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D76268
Summary: This is somewhat complex(annoying) as it involves directly tracking the uses within each of the callgraph nodes, and updating them as needed during inlining. The benefit of this is that we can have a more exact cost model, enable inlining some otherwise non-inlinable cases, and also ensure that newly dead callables are properly disposed of.
Differential Revision: https://reviews.llvm.org/D75476
Summary:
This revision adds a new hook, `notifyMatchFailure`, that allows for notifying the rewriter that a match failure is coming with the provided reason. This hook takes as a parameter a callback that fills a `Diagnostic` instance with the reason why the match failed. This allows for the rewriter to decide how this information can be displayed to the end-user, and may completely ignore it if desired(opt mode). For now, DialectConversion is updated to include this information in the debug output.
Differential Revision: https://reviews.llvm.org/D76203
Summary: PatternState was a mechanism to pass state between the match and rewrite calls of a RewritePattern. With the rise of matchAndRewrite, this class is unused and unnecessary. This revision removes PatternState and simplifies PatternMatchResult to just be a LogicalResult. A future revision will replace all usages of PatternMatchResult/matchSuccess/matchFailure with LogicalResult equivalents.
Differential Revision: https://reviews.llvm.org/D76202
- rename vars that had inst suffixes (due to ops earlier being
known as insts); other renames for better readability
- drop unnecessary matches in test cases
- iterate without block terminator
- comment/doc updates
- instBodySkew -> affineForOpBodySkew
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D76214
Summary:
- remove stale declarations on flat affine constraints
- avoid allocating small vectors where possible
- clean up code comments, rename some variables
Differential Revision: https://reviews.llvm.org/D76117
Summary: A number of transform import StandardOps despite not being dependent on it. Cleaned it up to better understand what dialects each of these transforms depend on.
Differential Revision: https://reviews.llvm.org/D76112
HasNoSideEffect can now be implemented using the MemoryEffectInterface, removing the need to check multiple things for the same information. This also removes an easy foot-gun for users as 'Operation::hasNoSideEffect' would ignore operations that dynamically, or recursively, have no side effects. This also leads to an immediate improvement in some of the existing users, such as DCE, now that they have access to more information.
Differential Revision: https://reviews.llvm.org/D76036
The current mechanism for identifying is a bit hacky and extremely adhoc, i.e. we explicit check 1-result, 0-operand, no side-effect, and always foldable and then assume that this is a constant. Adding a trait adds structure to this, and makes checking for a constant much more efficient as we can guarantee that all of these things have already been verified.
Differential Revision: https://reviews.llvm.org/D76020
These terminator operations don't really have any side effects, and this allows for more accurate side-effect analysis for region operations. For example, currently we can't detect like a loop.for or affine.for are dead because the affine.terminator is "side effecting".
Note: Marking as NoSideEffect doesn't mean that these operations can be opaquely erased.
Differential Revision: https://reviews.llvm.org/D75888
Summary:
affineDataCopyGenerate is a monolithinc function that
combines several steps for good reasons, but it makes customizing
the behaivor even harder. The major two steps by affineDataCopyGenerate are:
a) Identify interesting memrefs and collect their uses.
b) Create new buffers to forward these uses.
Step (a) actually has requires tremendous customization options. One could see
that from the recently added filterMemRef parameter.
This patch adds a function that only does (b), in the hope that (a)
can be directly implemented by the callers. In fact, (a) is quite
simple if the caller has only one buffer to consider, or even one use.
Differential Revision: https://reviews.llvm.org/D75965
Summary:
Interfaces/ is the designated directory for these types of interfaces, and also removes the need for including them directly in IR/.
Differential Revision: https://reviews.llvm.org/D75886
The interfaces themselves aren't really analyses, they may be used by analyses though. Having them in Analysis can also create cyclic dependencies if an analysis depends on a specific dialect, that also provides one of the interfaces.
Differential Revision: https://reviews.llvm.org/D75867
Summary:
The old interface was a temporary stopgap to allow for implementing simple LICM that took side effects of region operations into account. Now that MLIR has proper support for specifying memory effects, this interface can be deleted.
Differential Revision: https://reviews.llvm.org/D74441
Putting this up mainly for discussion on
how this should be done. I am interested in MLIR from
the Julia side and we currently have a strong preference
to dynamically linking against the LLVM shared library,
and would like to have a MLIR shared library.
This patch adds a new cmake function add_mlir_library()
which accumulates a list of targets to be compiled into
libMLIR.so. Note that not all libraries make sense to
be compiled into libMLIR.so. In particular, we want
to avoid libraries which primarily exist to support
certain tools (such as mlir-opt and mlir-cpu-runner).
Note that the resulting libMLIR.so depends on LLVM, but
does not contain any LLVM components. As a result, it
is necessary to link with libLLVM.so to avoid linkage
errors. So, libMLIR.so requires LLVM_BUILD_LLVM_DYLIB=on
FYI, Currently it appears that LLVM_LINK_LLVM_DYLIB is broken
because mlir-tblgen is linked against libLLVM.so and
and independent LLVM components.
Previous version of this patch broke depencies on TableGen
targets. This appears to be because it compiled all
libraries to OBJECT libraries (probably because cmake
is generating different target names). Avoiding object
libraries results in correct dependencies.
(updated by Stephen Neuendorffer)
Differential Revision: https://reviews.llvm.org/D73130
add_llvm_library and add_llvm_executable may need to create new targets with
appropriate dependencies. As a result, it is not sufficient in some
configurations (namely LLVM_BUILD_LLVM_DYLIB=on) to only call
add_dependencies(). Instead, the explicit TableGen dependencies must
be passed to add_llvm_library() or add_llvm_executable() using the DEPENDS
keyword.
Differential Revision: https://reviews.llvm.org/D74930
CMake allows calling target_link_libraries() without a keyword,
but this usage is not preferred when also called with a keyword,
and has surprising behavior. This patch explicitly specifies a
keyword when using target_link_libraries().
Differential Revision: https://reviews.llvm.org/D75725
Summary:
This revision removes all of the functionality related to successor operands on the core Operation class. This greatly simplifies a lot of handling of operands, as well as successors. For example, DialectConversion no longer needs a special "matchAndRewrite" for branching terminator operations.(Note, the existing method was also broken for operations with variadic successors!!)
This also enables terminator operations to define their own relationships with successor arguments, instead of the hardcoded "pass-through" behavior that exists today.
Differential Revision: https://reviews.llvm.org/D75318
The existing API for successor operands on operations is in the process of being removed. This revision simplifies a later one that completely removes the existing API.
Differential Revision: https://reviews.llvm.org/D75316
Summary:
Make computeConversionSet bubble up errors from nested regions. Note
that this doesn't change top-level behavior - since the nested region
calls emitError, the error was visible before, just not surfaced as
quickly.
Differential Revision: https://reviews.llvm.org/D75369
Summary: For example, DenseElementsAttr currently does not properly round-trip unsigned integer values.
Differential Revision: https://reviews.llvm.org/D75374
Putting this up mainly for discussion on
how this should be done. I am interested in MLIR from
the Julia side and we currently have a strong preference
to dynamically linking against the LLVM shared library,
and would like to have a MLIR shared library.
This patch adds a new cmake function add_mlir_library()
which accumulates a list of targets to be compiled into
libMLIR.so. Note that not all libraries make sense to
be compiled into libMLIR.so. In particular, we want
to avoid libraries which primarily exist to support
certain tools (such as mlir-opt and mlir-cpu-runner).
Note that the resulting libMLIR.so depends on LLVM, but
does not contain any LLVM components. As a result, it
is necessary to link with libLLVM.so to avoid linkage
errors. So, libMLIR.so requires LLVM_BUILD_LLVM_DYLIB=on
FYI, Currently it appears that LLVM_LINK_LLVM_DYLIB is broken
because mlir-tblgen is linked against libLLVM.so and
and independent LLVM components.
Previous version of this patch broke depencies on TableGen
targets. This appears to be because it compiled all
libraries to OBJECT libraries (probably because cmake
is generating different target names). Avoiding object
libraries results in correct dependencies.
(updated by Stephen Neuendorffer)
Differential Revision: https://reviews.llvm.org/D73130