This allows for using SFINAE partial specialization for DenseMapInfo.
In MLIR, this is particularly useful as it will allow for defining partial
specializations that support all Attribute, Op, and Type classes without
needing to specialize DenseMapInfo for each individual class.
Differential Revision: https://reviews.llvm.org/D113641
LLVM switchop currently only permits i32. Both LLVM IR and MLIR Standard switch permit other integer types leading to an illegal state when lowering an i8 switch from MLIR standard
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D113955
For the semi affine expressions, whenever rhs of a floordiv, ceildiv, mod
or product expression is a symbolic expression, we introduce a local variable
representing the result, and store the floordiv/ceildiv, mod or product
affine expression in LocalExprs. In this way the expression is flattened,
and trivial addition and subtraction related simplifications are performed.
Also rule based matching for detecting and transforming "expr - q * (expr floordiv q)"
to "expr mod q", where q is a symbolic exxpression, in simplifyAdd function.
Differential Revision: https://reviews.llvm.org/D112808
This patch extends the existing functionality of computing an explicit
representation for local variables, to also get the explicit representation,
instead of only the inequality pairs.
This is required for a future patch to remove redundant local ids based on
their explicit representation.
Reviewed By: arjunp
Differential Revision: https://reviews.llvm.org/D113814
This reverts commit 94992670fc.
Build is broken with:
tools/mlir/include/mlir/Dialect/LLVMIR/LLVMOps.cpp.inc:23996:3: error: no matching function for call to 'printSwitchOpCases'
printSwitchOpCases(_odsPrinter, *this, getValue().getType(), getCaseValuesAttr(), getCaseDestinations(), getCaseOperands(), getCaseOperands().getTypes());
^~~~~~~~~~~~~~~~~~
LLVM switchop currently only permits i32. Both LLVM IR and MLIR Standard switch permit other integer types leading to an illegal state when lowering an i8 switch from MLIR standard
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D113955
This revision contains all "sparsification" ops and rewriting necessary to support sparse output tensors when the kernel has no reduction (viz. insertions occur in lexicographic order and are "injective"). This will be later generalized to allow reductions too. Also, this first revision only supports sparse 1-d tensors (viz. vectors) as output in the runtime support library. This will be generalized to n-d tensors shortly. But this way, the revision is kept to a manageable size.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D113705
Multiply by one can be removed during canonicalization. This optimizes away unneeded operations.
Differential Revision: https://reviews.llvm.org/D113807
This is in prevision of dropping them altogether and using insert/extract based patterns.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D113928
This is analogous to what LLVM's PatternMatch.h supports,
but LLVM calls it m_Value for both the binding and
nonbinding versions.
This is an upstream from CIRCT and is used there.
Differential Revision: https://reviews.llvm.org/D113905
OperationLegalizer::isIllegal returns false if operation legality wasn't
registered by user and we expect same behaviour when dynamic legality
callback return None, but instead true was returned.
Differential Revision: https://reviews.llvm.org/D113267
This change makes it possible to set up custom mappings in a PostAnalysisStep. Some users of Comprehensive Bufferize have custom tensor types and it is most convenient to just reuse the same bvm.
Also add some more assertions.
Differential Revision: https://reviews.llvm.org/D113726
Names should be consistent across all operations otherwise painful bugs will surface.
Reviewed By: rsuderman
Differential Revision: https://reviews.llvm.org/D113762
This reverts commit bec488b818.
This commit introduced a layering violation between MLIR libraries.
Reverting for now while discussing on the original review thread.
This patch adds functionality to parse FlatAffineConstraints from a
StringRef with the intention to be used for unit tests. This should
make the construction of FlatAffineConstraints easier for testing
purposes.
The patch contains an example usage of the functionality in a unit test that
uses FlatAffineConstraints.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D113275
Part of the very first discussion here, but didn't upstream it before as we
didn't use it yet. Fix that for pending updates. Just adding the op here,
follow up will add the lowering to codegen.
Per discussion on discord and various feature requests across bindings (Haskell and Rust bindings authors have asked me directly), we should be building a link-ready MLIR-C dylib which exports the C API and can be used without linking to anything else.
This patch:
* Adds a new MLIR-C aggregate shared library (libMLIR-C.so), which is similar in name and function to libLLVM-C.so.
* It is guarded by the new CMake option MLIR_BUILD_MLIR_C_DYLIB, which has a similar purpose/name to the LLVM_BUILD_LLVM_C_DYLIB option.
* On all platforms, this will work with both static, BUILD_SHARED_LIBS, and libMLIR builds, if supported:
* In static builds: libMLIR-C.so will export the CAPI symbols and statically link all dependencies into itself.
* In BUILD_SHARED_LIBS: libMLIR-C.so will export the CAPI symbols and have dynamic dependencies on implementation shared libraries.
* In libMLIR.so mode: same as static. libMLIR.so was not finished for actual linking use within the project. An eventual relayering so that libMLIR-C.so depends on libMLIR.so is possible but requires first re-engineering the latter to use the aggregate facility.
* On Linux, exported symbols are filtered to only the CAPI. On others (MacOS, Windows), all symbols are exported. A CMake status is printed unless if global visibility is hidden indicating that this has not yet been implemented. The library should still work, but it will be larger and more likely to conflict until fixed. Someone should look at lifting the corresponding support from libLLVM-C.so and adapting. Or, for special uses, just build with `-DCMAKE_CXX_VISIBILITY_PRESET=hidden -DCMAKE_C_VISIBILITY_PRESET=hidden`.
* Includes fixes to execution engine symbol export macros to enable default visibility. Without this, the advice to use hidden visibility would have resulted in test failures and unusable execution engine support libraries.
Differential Revision: https://reviews.llvm.org/D113731
With `-Os` turned on, results in 2-5% binary size reduction
(depends on the original binary). Without it, the binary size
is essentially unchanged.
Depends on D113128
Differential Revision: https://reviews.llvm.org/D113331
This helper struct allows users of ComprehensiveBufferize to inject "post analysis" steps that are implemented after the analysis but before the bufferization.
Differential Revision: https://reviews.llvm.org/D113458
* Some long names were added and script decided to change whitespaces in a lot of places
* `ImageOperand` was renamed to `ImageOperands` in spec
* Some *NV enums were renamed to *KHR (spec actually maintains both variants with same value, but script pulled only *KHR versions)
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D113667
Support load with broadcast, elementwise divf op and remove the
hardcoded restriction on the vector size. Picking the right size should
be enfored by user and will fail conversion to llvm/spirv if it is not
supported.
Differential Revision: https://reviews.llvm.org/D113618
* Move "linalg.inplaceable" attr name literals to BufferizableOpInterface.
* Use `memref.copy` by default. Override to `linalg.copy` in ComprehensiveBufferizePass.
These are the last remaining code dependencies on Linalg in Comprehensive Bufferize. The next commit will make ComprehensiveBufferize independent of the Linalg dialect.
Differential Revision: https://reviews.llvm.org/D113457
This revision adds an implementation of 2-D vector.transpose for 4x8 and 8x8 for
AVX2 and surfaces it to the Linalg level of control.
Reviewed By: dcaballe
Differential Revision: https://reviews.llvm.org/D113347
This decouples the printing/parsing from the "context" in which the parsing occurs.
This will allow to invoke these methods directly using an OpAsmParser/OpAsmPrinter.
Differential Revision: https://reviews.llvm.org/D113637
Move helper functions for traversing reverse use-def chains. These are useful for implementing custom optimizations (e.g., custom InitTensorOp eliminations).
Also move over the AllocationCallbacks struct. This is in preparation for decoupling ComprehensiveBufferize from various dialects.
Differential Revision: https://reviews.llvm.org/D113386
mapped_iterator is a useful abstraction for applying a
map function over an existing iterator, but our current
usage ends up allocating storage/making indirect calls
even with the map function is a known function, which
is horribly inefficient. This commit refactors the usage
of mapped_iterator to avoid this, and allows for directly
referencing the map function when dereferencing.
Fixes PR52319
Differential Revision: https://reviews.llvm.org/D113511
* Sprinkle `inline` on a few small and hot hashing/uniquing methods
* Use the faster DenseMapInfo hash functions instead of
llvm::hash_value.
This provides a speed up of a few percent in workloads with lots of
attributes.
Identifier and StringAttr essentially serve the same purpose, i.e. to hold a string value. Keeping these seemingly identical pieces of functionality separate has caused problems in certain situations:
* Identifier has nice accessors that StringAttr doesn't
* Identifier can't be used as an Attribute, meaning strings are often duplicated between Identifier/StringAttr (e.g. in PDL)
The only thing that Identifier has that StringAttr doesn't is support for caching a dialect that is referenced by the string (e.g. dialect.foo). This functionality is added to StringAttr, as this is useful for StringAttr in generally the same ways it was useful for Identifier.
Differential Revision: https://reviews.llvm.org/D113536
This make `getResultBuffer` in ComprehensiveBufferize independent of the SCF, Affine and Linalg dialects. This commit is in preparating of decoupling op interface implementations from ComprehensiveBufferize.
Differential Revision: https://reviews.llvm.org/D113380
The specific description is [[ https://llvm.discourse.group/t/adding-unsigned-integer-ceil-and-floor-in-std-dialect/4541 | Adding unsigned integer ceil in Std Dialect ]] .
When we lower ceilDivOp this will generate below code, sometimes we know m and n are unsigned intergal.Here are some redundant judgments about positive and negative.
So we need to add some unsigned operations to simplify the instructions.
```
ceilDiv(n, m)
x = (m > 0) ? -1 : 1
return (n*m>0) ? ((n+x) / m) + 1 : - (-n / m)
```
unsigned operations:
```
ceilDivU(n, m)
return n ==0 ? 0 : ((n - 1) / m) + 1
```
Reviewed By: Mogball
Differential Revision: https://reviews.llvm.org/D113363