This reverts commit bec488b818.
This commit introduced a layering violation between MLIR libraries.
Reverting for now while discussing on the original review thread.
This patch adds functionality to parse FlatAffineConstraints from a
StringRef with the intention to be used for unit tests. This should
make the construction of FlatAffineConstraints easier for testing
purposes.
The patch contains an example usage of the functionality in a unit test that
uses FlatAffineConstraints.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D113275
Identifier and StringAttr essentially serve the same purpose, i.e. to hold a string value. Keeping these seemingly identical pieces of functionality separate has caused problems in certain situations:
* Identifier has nice accessors that StringAttr doesn't
* Identifier can't be used as an Attribute, meaning strings are often duplicated between Identifier/StringAttr (e.g. in PDL)
The only thing that Identifier has that StringAttr doesn't is support for caching a dialect that is referenced by the string (e.g. dialect.foo). This functionality is added to StringAttr, as this is useful for StringAttr in generally the same ways it was useful for Identifier.
Differential Revision: https://reviews.llvm.org/D113536
The change is based on the proposal from the following discussion:
https://llvm.discourse.group/t/rfc-memreftype-affine-maps-list-vs-single-item/3968
* Introduce `MemRefLayoutAttr` interface to get `AffineMap` from an `Attribute`
(`AffineMapAttr` implements this interface).
* Store layout as a single generic `MemRefLayoutAttr`.
This change removes the affine map composition feature and related API.
Actually, while the `MemRefType` itself supported it, almost none of the upstream
can work with more than 1 affine map in `MemRefType`.
The introduced `MemRefLayoutAttr` allows to re-implement this feature
in a more stable way - via separate attribute class.
Also the interface allows to use different layout representations rather than affine maps.
For example, the described "stride + offset" form, which is currently supported in ASM parser only,
can now be expressed as separate attribute.
Reviewed By: ftynse, bondhugula
Differential Revision: https://reviews.llvm.org/D111553
The functionality already exists in AsmParser to parse optional ArrayAttrs and
StringAttrs, but only if they are added to a NamedAttrList. This moves the
code to parse an optional attribute and add it to an list into a common
template, and exposes the simpler functionality of just parsing the optional
attributes.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D111918
This adds a new parser and printer for text which may be a keyword or a
string. When printing, it will attempt to print the text as a keyword,
but if it has any special or non-printable characters, it will be
printed as an escaped string. When parsing, it will parse either a
valid keyword or a potentially escaped string. The printer allows for an
empty string, in which case it prints `""`.
This new function is used for printing the name in NamedAttributes, and
for printing the symbol name after the `@`. In CIRCT we are using this
to print module port names, which are conceptually similar to named
function arguments.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D111683
TensorLiteralParser::getHexAttr does a isIntOrIndexOrFloat check and properly handles index elements, but TensorLiteralParser::getAttr that calls into it has a mismatched check. This just makes the checks match so that index element attrs can parse when of type tensor.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D111374
The former is redundant because the later carries it as part of
its builder. Add a getContext() helper method to DialectAsmParser
to make this more convenient, and stop passing the context around
explicitly. This simplifies ODS generated parser hooks for attrs
and types.
This resolves PR51985
Recommit 4b32f8bac4 after fixing a dependency.
Differential Revision: https://reviews.llvm.org/D110796
The former is redundant because the later carries it as part of
its builder. Add a getContext() helper method to DialectAsmParser
to make this more convenient, and stop passing the context around
explicitly. This simplifies ODS generated parser hooks for attrs
and types.
This resolves PR51985
Differential Revision: https://reviews.llvm.org/D110796
This has a few benefits:
* It allows for defining parsers/printer code blocks that
can be shared between operations and attribute/types.
* It removes the weird duplication of generic parser/printer hooks,
which means that newly added hooks only require touching one class.
Differential Revision: https://reviews.llvm.org/D110375
Lots of custom ops have hand-rolled comma-delimited parsing loops, as does
the MLIR parser itself. Provides a standard interface for doing this that
is less error prone and less boilerplate.
While here, extend Delimiter to support <> and {} delimited sequences as
well (I have a use for <> in CIRCT specifically).
Differential Revision: https://reviews.llvm.org/D110122
SparseElementsAttr currently does not perform any verfication on construction, with the only verification existing within the parser. This revision moves the parser verification to SparseElementsAttr, and also adds additional verification for when a sparse index is not valid.
Differential Revision: https://reviews.llvm.org/D109189
DialectAsmParser::parseKeyword is rejecting `'i' digit+` while it is
a valid identifier according to mlir/docs/LangRef.md.
Integer types actually used to be TOK_KEYWORD a while back before the
change: 6af866c58d.
This patch Modifies `isCurrentTokenAKeyword` to return true for tokens that
match integer types too.
The motivation for this change is the parsing of `!fir.type<{` `component-name: component-type,`+ `}>`
type in FIR that represent Fortran derived types. The component-names are
parsed as keywords, and can very well be i32 or any ixxx (which are
valid Fortran derived type component names).
The Quant dialect type parser had to be modified since it relied on `iw` not
being parsed as keywords.
Differential Revision: https://reviews.llvm.org/D108913
Currently the builtin dialect is the default namespace used for parsing
and printing. As such module and func don't need to be prefixed.
In the case of some dialects that defines new regions for their own
purpose (like SpirV modules for example), it can be beneficial to
change the default dialect in order to improve readability.
Differential Revision: https://reviews.llvm.org/D107236
The StringAttr version doesn't need a context, so we can just use the
existing `SymbolRefAttr::get` form. The StringRef version isn't preferred
so we want to encourage people to use StringAttr.
There is an additional form of getSymbolRefAttr that takes a (SymbolTrait
implementing) operation. This should also be moved, but I'll do that as
a separate patch.
Differential Revision: https://reviews.llvm.org/D108922
This allows for parsing strings that have escape sequences, which require constructing
a string (as they can't be represented by looking at the Token contents directly).
Differential Revision: https://reviews.llvm.org/D108589
Historically the builtin dialect has had an empty namespace. This has unfortunately created a very awkward situation, where many utilities either have to special case the empty namespace, or just don't work at all right now. This revision adds a namespace to the builtin dialect, and starts to cleanup some of the utilities to no longer handle empty namespaces. For now, the assembly form of builtin operations does not require the `builtin.` prefix. (This should likely be re-evaluated though)
Differential Revision: https://reviews.llvm.org/D105149
This allows for building an outline of the symbols and symbol tables within the IR. This allows for easy navigations to functions/modules and other symbol/symbol table operations within the IR.
Differential Revision: https://reviews.llvm.org/D103729
We were accidentally only using the first found reference, instead of all of them. This revision fixes this by properly tracking all references to a symbol.
Differential Revision: https://reviews.llvm.org/D103730
This revision adds assembly state tracking for uses of symbols, allowing for go-to-definition and references support for SymbolRefAttrs.
Differential Revision: https://reviews.llvm.org/D103585
Currently the diagnostics reports the file:line:col, but some LSP
frontends require a non-empty range. Report either the range of an
identifier that starts at location, or a range of 1. Expose the id
location to range helper and reuse here.
Differential Revision: https://reviews.llvm.org/D103482
Currently, AbstractOperation fields are function pointers.
Modifying them to unique_function allow them to contain
runtime information.
For instance, this allows operations to be defined at runtime.
Differential Revision: https://reviews.llvm.org/D103031
This adds the ability to specify a location when creating BlockArguments.
Notably Value::getLoc() will return this correctly, which makes diagnostics
more precise (e.g. the example in test-legalize-type-conversion.mlir).
This is currently optional to avoid breaking any existing code - if
absent, the BlockArgument defaults to using the location of its enclosing
operation (preserving existing behavior).
The bulk of this change is plumbing location tracking through the parser
and printer to make sure it can round trip (in -mlir-print-debuginfo
mode). This is complete for generic operations, but requires manual
adoption for custom ops.
I added support for function-like ops to round trip their argument
locations - they print correctly, but when parsing the locations are
dropped on the floor. I intend to fix this, but it will require more
invasive plumbing through "function_like_impl" stuff so I think it
best to split it out to its own patch.
This is a reapply of the patch here: https://reviews.llvm.org/D102567
with an additional change: we now never defer block argument locations,
guaranteeing that we can round trip correctly.
This isn't required in all cases, but allows us to hill climb here and
works around unrelated bugs like https://bugs.llvm.org/show_bug.cgi?id=50451
Differential Revision: https://reviews.llvm.org/D102991
Reland Note: This was accidentally reverted in 80d981eda6, but is an important improvement even outside of the driving motivator in D102567.
We currently use SourceMgr::getLineAndColumn to get the line and column for an SMLoc, but this includes a call to StringRef::find_last_of that ends up dominating compile time. In D102567, we start creating locations from the input file for block arguments which resulted in an extreme performance regression for modules with very large amounts of block arguments. This revision switches to just using a pointer offset from the beginning of the line to calculate the column(all MLIR files are simple ascii), resulting in a compile time reduction from 4700 seconds (1 hour and 18 minutes) to 8 seconds.
"[mlir] Speed up Lexer::getEncodedSourceLocation"
This reverts commit 3043be9d2d and commit
861d69a525.
This change resulted in printing textual MLIR that can't be parsed; see
review thread https://reviews.llvm.org/D102567 for details.
We currently use SourceMgr::getLineAndColumn to get the line and column for an SMLoc, but this includes a call to StringRef::find_last_of that ends up dominating compile time. In D102567, we start creating locations from the input file for block arguments which resulted in an extreme performance regression for modules with very large amounts of block arguments. This revision switches to just using a pointer offset from the beginning of the line to calculate the column(all MLIR files are simple ascii), resulting in a compile time reduction from 4700 seconds (1 hour and 18 minutes) to 8 seconds.
Differential Revision: https://reviews.llvm.org/D102734
This adds the ability to specify a location when creating BlockArguments.
Notably Value::getLoc() will return this correctly, which makes diagnostics
more precise (e.g. the example in test-legalize-type-conversion.mlir).
This is currently optional to avoid breaking any existing code - if
absent, the BlockArgument defaults to using the location of its enclosing
operation (preserving existing behavior).
The bulk of this change is plumbing location tracking through the parser
and printer to make sure it can round trip (in -mlir-print-debuginfo
mode). This is complete for generic operations, but requires manual
adoption for custom ops.
I added support for function-like ops to round trip their argument
locations - they print correctly, but when parsing the locations are
dropped on the floor. I intend to fix this, but it will require more
invasive plumbing through "function_like_impl" stuff so I think it
best to split it out to its own patch.
Differential Revision: https://reviews.llvm.org/D102567
This allows for diagnostics emitted during parsing/verification to be surfaced to the user by the language client, as opposed to just being emitted to the logs like they are now.
Differential Revision: https://reviews.llvm.org/D102293
DialectAsmParser already allows converting an llvm::SMLoc location to a
mlir::Location location. This commit adds the same functionality to OpAsmParser.
Implementation is copied from DialectAsmParser.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D102165
OpAsmParser (and DialectAsmParser) supports a pair of
parseInteger/parseOptionalInteger methods, which allow parsing a bare
integer into a C type of your choice (e.g. int8_t) using templates. It
was implemented in terms of a virtual method call that is hard coded to
int64_t because "that should be big enough".
Change the virtual method hook to return an APInt instead. This allows
asmparsers for custom ops to parse large integers if they want to, without
changing any of the clients of the fixed size C API.
Differential Revision: https://reviews.llvm.org/D102120
This provides information when the user hovers over a part of the source .mlir file. This revision adds the following hover behavior:
* Operation:
- Shows the generic form.
* Operation Result:
- Shows the parent operation name, result number(s), and type(s).
* Block:
- Shows the parent operation name, block number, predecessors, and successors.
* Block Argument:
- Shows the parent operation name, parent block, argument number, and type.
Differential Revision: https://reviews.llvm.org/D101113
This enables to express more complex parallel loops in the affine framework,
for example, in cases of tiling by sizes not dividing loop trip counts perfectly
or inner wavefront parallelism, among others. One can't use affine.max/min
and supply values to the nested loop bounds since the results of such
affine.max/min operations aren't valid symbols. Making them valid symbols
isn't an option since they would introduce selection trees into memref
subscript arithmetic as an unintended and undesired consequence. Also
add support for converting such loops to SCF. Drop some API that isn't used in
the core repo from AffineParallelOp since its semantics becomes ambiguous in
presence of max/min bounds. Loop normalization is currently unavailable for
such loops.
Depends On D101171
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D101172
The new "encoding" field in tensor types so far had no meaning. This revision introduces:
1. an encoding attribute interface in IR: for verification between tensors and encodings in general
2. an attribute in Tensor dialect; #tensor.sparse<dict> + concrete sparse tensors API
Active discussion:
https://llvm.discourse.group/t/rfc-introduce-a-sparse-tensor-type-to-core-mlir/2944/
Reviewed By: silvas, penpornk, bixia
Differential Revision: https://reviews.llvm.org/D101008
This information isn't useful for general compilation, but is useful for building tools that process .mlir files. This class will be used in a followup to start building an LSP language server for MLIR.
Differential Revision: https://reviews.llvm.org/D100438
This allows custom types and attribute to parse a dimension list that
isn't necessarily terminated with `xtype`, for example something like:
#tf.shape<4x5>
Differential Revision: https://reviews.llvm.org/D100432
This CL introduces a generic attribute (called "encoding") on tensors.
The attribute currently does not carry any concrete information, but the type
system already correctly determines that tensor<8xi1,123> != tensor<8xi1,321>.
The attribute will be given meaning through an interface in subsequent CLs.
See ongoing discussion on discourse:
[RFC] Introduce a sparse tensor type to core MLIR
https://llvm.discourse.group/t/rfc-introduce-a-sparse-tensor-type-to-core-mlir/2944
A sparse tensor will look something like this:
```
// named alias with all properties we hold dear:
#CSR = {
// individual named attributes
}
// actual sparse tensor type:
tensor<?x?xf64, #CSR>
```
I see the following rough 5 step plan going forward:
(1) introduce this format attribute in this CL, currently still empty
(2) introduce attribute interface that gives it "meaning", focused on sparse in first phase
(3) rewrite sparse compiler to use new type, remove linalg interface and "glue"
(4) teach passes to deal with new attribute, by rejecting/asserting on non-empty attribute as simplest solution, or doing meaningful rewrite in the longer run
(5) add FE support, document, test, publicize new features, extend "format" meaning to other domains if useful
Reviewed By: stellaraccident, bondhugula
Differential Revision: https://reviews.llvm.org/D99548
The patch enables the use of index type in vectors. It is a prerequisite to support vectorization for indexed Linalg operations. This refactoring became possible due to the newly introduced data layout infrastructure. The data layout of a module defines the bitwidth of the index type needed to verify bitcasts and similar vector operations.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D99948
In particular for Graph Regions, the terminator needs is just a
historical artifact of the generalization of MLIR from CFG region.
Operations like Module don't need a terminator, and before Module
migrated to be an operation with region there wasn't any needed.
To validate the feature, the ModuleOp is migrated to use this trait and
the ModuleTerminator operation is deleted.
This patch is likely to break clients, if you're in this case:
- you may iterate on a ModuleOp with `getBody()->without_terminator()`,
the solution is simple: just remove the ->without_terminator!
- you created a builder with `Builder::atBlockTerminator(module_body)`,
just use `Builder::atBlockEnd(module_body)` instead.
- you were handling ModuleTerminator: it isn't needed anymore.
- for generic code, a `Block::mayNotHaveTerminator()` may be used.
Differential Revision: https://reviews.llvm.org/D98468
This has been a TODO for a while, and prevents breakages for attributes/types that contain floats that can't roundtrip outside of the hex format.
Differential Revision: https://reviews.llvm.org/D98808