This commit changes the inlining to also update the locations of block
arguments. Not updating these locations leads to LLVM IR verification
issues when exporting converted block arguments to phi nodes. This lack
of location update was not visible due to ignoring the argument
locations until recently.
Relevant change: https://github.com/llvm/llvm-project/pull/105534
MLIR can't really be const-correct (it would need a `ConstValue` class
alongside the `Value` class really, like `ArrayRef` and
`MutableArrayRef`). This is however making is more consistent: method
that are directly modifying the Value shouldn't be marked const.
Functions are always callable operations and thus every operation
implementing the `FunctionOpInterface` also implements the
`CallableOpInterface`. The only exception was the FuncOp in the toy
example. To make implementation of the `FunctionOpInterface` easier,
this commit lets `FunctionOpInterface` inherit from
`CallableOpInterface` and merges some of their methods. More precisely,
the `CallableOpInterface` has methods to get the argument and result
attributes and a method to get the result types of the callable region.
These methods are always implemented the same way as their analogues in
`FunctionOpInterface` and thus this commit moves all the argument and
result attribute handling methods to the callable interface as well as
the methods to get the argument and result types. The
`FuntionOpInterface` then does not have to declare them as well, but
just inherits them from the `CallableOpInterface`.
Adding the inheritance relation also required to move the
`FunctionOpInterface` from the IR directory to the Interfaces directory
since IR should not depend on Interfaces.
Reviewed By: jpienaar, springerm
Differential Revision: https://reviews.llvm.org/D157988
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This patch updates all remaining uses of the deprecated functionality in
mlir/. This was done with clang-tidy as described below and further
modifications to GPUBase.td and OpenMPOpsInterfaces.td.
Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
additional check:
main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
them to a pure state.
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-header-filter=mlir/ mlir/* -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
```
Differential Revision: https://reviews.llvm.org/D151542
Currently conversions to interfaces may happen implicitly (e.g.
`Attribute -> TypedAttr`), failing a runtime assert if the interface
isn't actually implemented. This change marks the `Interface(ValueT)`
constructor as explicit so that a cast is required.
Where it was straightforward to I adjusted code to not require casts,
otherwise I just made them explicit.
Depends on D148491, D148492
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D148493
The revision ensures the newly introduced argument
and result handlers cannot be used for type conversion.
Instead use the existing materializeCallConversion hook to
perform type conversions.
Reviewed By: Dinistro
Differential Revision: https://reviews.llvm.org/D147605
The revision adds the handleArgument and handleResult handlers that
allow users of the inlining interface to implement argument and result
conversions that take argument and result attributes into account. The
motivating use cases for this revision are taken from the LLVM dialect
inliner, which has to copy arguments that are marked as byval and that
also has to consider zeroext / signext when converting integers.
All type conversions are currently handled by the
materializeCallConversion hook. It runs before isLegalToInline and
supports only the introduction of a single cast operation since it may
have to rollback. The new handlers run shortly before and after
inlining and cannot fail. As a result, they can introduce more complex
ir such as copying a struct argument. At the moment, the new hooks
cannot be used to perform type conversions since all type conversions
have to be done using the materializeCallConversion. A follow up
revision will either relax this constraint or drop
materializeCallConversion in favor of the new and more flexible
handlers.
The revision also extends the CallableOpInterface to provide access
to the argument and result attributes if available.
Reviewed By: rriddle, Dinistro
Differential Revision: https://reviews.llvm.org/D145582
The patch adds operations to `BlockAndValueMapping` and renames it to `IRMapping`. When operations are cloned, old operations are mapped to the cloned operations. This allows mapping from an operation to a cloned operation. Example:
```
Operation *opWithRegion = ...
Operation *opInsideRegion = &opWithRegion->front().front();
IRMapping map
Operation *newOpWithRegion = opWithRegion->clone(map);
Operation *newOpInsideRegion = map.lookupOrNull(opInsideRegion);
```
Migration instructions:
All includes to `mlir/IR/BlockAndValueMapping.h` should be replaced with `mlir/IR/IRMapping.h`. All uses of `BlockAndValueMapping` need to be renamed to `IRMapping`.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D139665
This commit moves FuncOp out of the builtin dialect, and into the Func
dialect. This move has been planned in some capacity from the moment
we made FuncOp an operation (years ago). This commit handles the
functional aspects of the move, but various aspects are left untouched
to ease migration: func::FuncOp is re-exported into mlir to reduce
the actual API churn, the assembly format still accepts the unqualified
`func`. These temporary measures will remain for a little while to
simplify migration before being removed.
Differential Revision: https://reviews.llvm.org/D121266
BlockArguments gained the ability to have locations attached a while ago, but they
have always been optional. This goes against the core tenant of MLIR where location
information is a requirement, so this commit updates the API to require locations.
Fixes#53279
Differential Revision: https://reviews.llvm.org/D117633
This allows for inlining into an empty block or to the beginning of a block. NFC as the existing implementations now foward to this overload.
Differential Revision: https://reviews.llvm.org/D108572
This allows for dialects to do different post-processing depending on operations with the inliner (my use case requires different attribute propagation rules depending on call op). This hook runs before the regular processInlinedBlocks method.
Differential Revision: https://reviews.llvm.org/D104399
Given that OpState already implicit converts to Operator*, this seems reasonable.
The alternative would be to add more functions to OpState which forward to Operation.
Reviewed By: rriddle, ftynse
Differential Revision: https://reviews.llvm.org/D92266
These includes have been deprecated in favor of BuiltinDialect.h, which contains the definitions of ModuleOp and FuncOp.
Differential Revision: https://reviews.llvm.org/D91572
Often times the legality of inlining can change depending on if the callable is going to be inlined in-place, or cloned. For example, some operations are not allowed to be duplicated and can only be inlined if the original callable will cease to exist afterwards. The new `wouldBeCloned` flag allows for dialects to hook into this when determining legality.
Differential Revision: https://reviews.llvm.org/D90360
In certain situations it isn't legal to inline a call operation, but this isn't something that is possible(at least not easily) to prevent with the current hooks. This revision adds a new hook so that dialects with call operations that shouldn't be inlined can prevent it.
Differential Revision: https://reviews.llvm.org/D90359
- Add getArgumentTypes() to Region (missed from before)
- Adopt Region argument API in `hasMultiplyAddBody`
- Fix 2 typos in comments
Differential Revision: https://reviews.llvm.org/D84807
The previous code result a mismatch between block argument types and
predecessor successor args when a type conversion was needed in a
multiblock case. It was assuming the replaced result types matched the
region result types.
Also, slighly improve the debug output from the inliner.
Differential Revision: https://reviews.llvm.org/D78415
Summary:
This enables tracking calls that cross symbol table boundaries. It also simplifies some of the implementation details of CallableOpInterface, i.e. there can only be one region within the callable operation.
Depends On D72042
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D72043
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.
PiperOrigin-RevId: 286844725
Some dialects have implicit conversions inherent in their modeling, meaning that a call may have a different type that the type that the callable expects. To support this, a hook is added to the dialect interface that allows for materializing conversion operations during inlining when there is a mismatch. A hook is also added to the callable interface to allow for introspecting the expected result types.
PiperOrigin-RevId: 272814379
This allows for the inliner to work on arbitrary call operations. The updated inliner will also work bottom-up through the callgraph enabling support for multiple levels of inlining.
PiperOrigin-RevId: 272813876
This defines a set of initial utilities for inlining a region(or a FuncOp), and defines a simple inliner pass for testing purposes.
A new dialect interface is defined, DialectInlinerInterface, that allows for dialects to override hooks controlling inlining legality. The interface currently provides the following hooks, but these are just premilinary and should be changed/added to/modified as necessary:
* isLegalToInline
- Determine if a region can be inlined into one of this dialect, *or* if an operation of this dialect can be inlined into a given region.
* shouldAnalyzeRecursively
- Determine if an operation with regions should be analyzed recursively for legality. This allows for child operations to be closed off from the legality checks for operations like lambdas.
* handleTerminator
- Process a terminator that has been inlined.
This cl adds support for inlining StandardOps, but other dialects will be added in followups as necessary.
PiperOrigin-RevId: 267426759