As was suggested in mails, this patch implements edata/etext
symbols in a more direct way.
It iterates through PT_LOADs.
Result seems to be the same and equal to gold output.
Differential revision: http://reviews.llvm.org/D17755
llvm-svn: 262369
__start_/__end_ <section-name> symbols and other specials like:
preinit_array_start/end
init_array_start/end
fini_array_start/end
should not be created by linker when creating relocatable files.
Differential revision: http://reviews.llvm.org/D17774
llvm-svn: 262366
Regarding the comment, it is out of context because it describes
what it does not do there. It got too long because it was originally
two different comments that were simply merged together.
The semantics is described in fixAbsoluteSymbols, so we don't need it.
llvm-svn: 262031
https://docs.oracle.com/cd/E53394_01/html/E54766/u-etext-3c.html
It is said that:
_etext - The address of _etext is the first
location after the last read-only loadable segment.
_edata - The address of _edata is the first
location after the last read-write loadable segment.
_end - If the address of _edata is greater than the address
of _etext, the address of _end is same as the address of _edata.
In real life _end and _edata has different values for that case.
Both gold/bfd set _edata to the end of the last non SHT_NOBITS section.
This patch do the same for consistency.
It should fix the https://llvm.org/bugs/show_bug.cgi?id=26729.
Differential revision: http://reviews.llvm.org/D17601
llvm-svn: 262019
For shared libraries we allow any weak undefined symbol to eventually be
resolved, even if we never see a definition in another .so. This matches
the behavior when handling other undefined symbols in a shared library.
For executables, we require seeing a definition in a .so or resolve it
to zero. This is also similar to how non weak symbols are handled.
llvm-svn: 262017
-r, -relocatable - Generate relocatable output
Currently does not have support for files containing
relocation sections with entries that refer to local
symbols (like rel[a].eh_frame which refer to sections
and not to symbols)
Differential revision: http://reviews.llvm.org/D14382
llvm-svn: 261838
"Discarded" section is a marker for discarded sections, and we do not
use the instance except for checking its identity. In that sense, it
is just another type of a "null" pointer for InputSectionBase. So,
it doesn't have to be a real instance of InputSectionBase class.
In this patch, we no longer instantiate Discarded section but instead
use -1 as a pointer value. This eliminates a global variable which
needed initialization at startup.
llvm-svn: 261761
There is nothing aarch64 specific in here. If a symbol can be preempted,
we need to copy the full relocation to the dynamic linker.
If a symbol cannot be preempted, we can make the dynamic linker life
easier and produce a relative relocation.
This is directly equivalent to R_X86_64_64 to R_x86_64_RELATIVE
conversion.
llvm-svn: 261678
The .tbss section is in the middle of a PT_LOAD. Whatever treatment we
give to its address we must also give to the offset.
We were ignoring it for address computations, but not for offset.
Fixes pr26712.
llvm-svn: 261667
This patch fixes the R_AARCH64_ABS64 relocation when used in shared mode,
where it requires a dynamic R_AARCH64_RELATIVE relocation. To correct set
the addend on the dynamic relocation (since it will be used by the dynamic
linker), a new TargetInfo specific hook was created (getDynRelativeAddend)
to get the correct addend based on relocation type.
The patch fixes the issues when creating shared library code against
{init,fini}_array, where it issues R_AARCH64_ABS64 relocation against
local symbols.
llvm-svn: 261651
This reduces the .rodata of scyladb from 4501932 to 4334639 bytes (1.038
times smaller).
I don't think it is critical to support tail merging, just exact
duplicates, but given the code organization it was actually a bit easier
to support both.
llvm-svn: 261327
Previously, we added garbage-collected symbols to the symbol table
and filter them out when we were writing symbols to the file. In
this patch, garbage-collected symbols are filtered out from beginning.
llvm-svn: 261064
Each rule in SECTIONS commands is something like ".foo *(.baz.*)",
which instructs the linker to collect all sections whose name matches
".baz.*" from all files and put them into .foo section.
Previously, we didn't recognize the wildcard character. This patch
adds that feature.
Performance impact is a bit concerning because a linker script can
contain hundreds of SECTIONS rules, and doing pattern matching against
each rule would be too expensive. We could merge all patterns into
single DFA so that it takes O(n) to the input size. However, it is
probably too much at this moment -- we don't know whether the
performance of pattern matching matters or not. So I chose to
implement the simplest algorithm in this patch. I hope this simple
pattern matcher is sufficient.
llvm-svn: 260745
Previously, we had code for linker scripts in Writer. This patch
separates that as LinkerScript class. The class provides a few
functions to query linker scripts and is also a container of some
linker-script-specific information.
Hopefully, Writer will only implement the default behavior and let
the new class handle gotchas regarding linker scripts.
llvm-svn: 260591
R_X86_64_TPOFF64 is a dynamic relocation,
it should not appear in static relocation processing.
Patch fixes it.
Differential revision: http://reviews.llvm.org/D16880
llvm-svn: 260508
They don't count for the memory or file size, so this is mostly just a
simplification.
The only noticeable difference should be fewer empty program headers.
llvm-svn: 260465
IMHO this makes the code easier to read and should help with linker
scripts.
This is strongly based on D16575. The main differences are:
We record a range of sections, not every section in a program header.
scanHeaders takes case of deciding what goes in every program header,
including PT_GNU_RELRO
We create dummy sections for the start of the file
With this, program header creation has 3 isolated stages:
Map sections to program headers.
Assign addresses to *sections*
Looking at sections find the address and size of each program header.
Thanks to George Rimar for the initial version.
llvm-svn: 260453
This is the function equivalent of a copy relocation.
Since functions are expected to change sizes, we cannot use copy
relocations. In situations where one would be needed, what is done
instead is:
* Create a plt entry
* Output an undefined symbol whose addr is the plt entry.
The dynamic linker makes sure any shared library uses the plt entry as
the function address.
llvm-svn: 260224
Previously, it was easy to leave some Out<ELFT> fields uninitialized
because assignments to the fields are mixed with output section
instantiations. In this patch, I separate initializations from assignments
to improve readability.
http://reviews.llvm.org/D16864
llvm-svn: 259899
The variable was marking various cases where a symbol must be included
in the dynamic symbol table. Being used by a dynamic relocation was only
one of them.
llvm-svn: 259889