I'm removing a misplaced pair of more specific folds from InstCombine in this patch as well,
so we know where those folds are happening in InstSimplify.
llvm-svn: 277738
ConstantExpr::getWithOperands does much of the hard work that
ConstantFoldInstOperandsImpl tries to do but more completely.
This lets us fold ExtractValue/InsertValue expressions.
llvm-svn: 277100
When folding an expression, we run ConstantFoldConstantExpression on
each operand of that expression.
However, ConstantFoldConstantExpression can fail and retur nullptr.
Previously, we would bail on further refining the expression.
Instead, use the original operand and see if we can refine a later
operand.
llvm-svn: 276959
rL245171 exposed a hole in InstSimplify that manifested in a strange way in PR28466:
https://llvm.org/bugs/show_bug.cgi?id=28466
It's possible to use trunc + icmp sgt/slt in place of an and + icmp eq/ne, so we need to
recognize that pattern to eliminate selects that are choosing between some value and some
bitmasked version of that value.
Note that there is significant room for improvement (refactoring) and enhancement (more
patterns, possibly in InstCombine rather than here).
Differential Revision: https://reviews.llvm.org/D22537
llvm-svn: 276341
Treat loads which clip before the start of a global initializer the same
way we treat clipping beyond the end of the initializer: use zeros.
llvm-svn: 275345
For functions which are known to return a specific argument, pointer-comparison
folding can look through the function calls as part of its analysis.
Differential Revision: http://reviews.llvm.org/D9387
llvm-svn: 275039
This is similar to the computeKnownBits improvement in rL268479.
There's probably more we can do for vector logic instructions, but
this should let us see non-splat constant masking ops that can
become vector selects instead of and/andn/or sequences.
Differential Revision: http://reviews.llvm.org/D21610
llvm-svn: 273459
By moving this transform to InstSimplify from InstCombine, we sidestep the problem/question
raised by PR27869:
https://llvm.org/bugs/show_bug.cgi?id=27869
...where InstCombine turns an icmp+zext into a shift causing us to miss the fold.
Credit to David Majnemer for a draft patch of the changes to InstructionSimplify.cpp.
Differential Revision: http://reviews.llvm.org/D21512
llvm-svn: 273200
Similar in spirit to D20497 :
If all elements of a constant vector are known non-zero, then we can say that the
whole vector is known non-zero.
It seems like we could extend this to FP scalar/vector too, but isKnownNonZero()
says it only works for integers and pointers for now.
Differential Revision: http://reviews.llvm.org/D20544
llvm-svn: 270562
Vector GEP with mixed (vector and scalar) indices failed on the InstSimplify Pass when all indices are constants.
Differential revision http://reviews.llvm.org/D20149
llvm-svn: 269590
Do simplifications common to all shift instructions based on the amount shifted:
1. If the shift amount is known larger than the bitwidth, the result is undefined.
2. If the valid bits of the shift amount are all known to be 0, it's a shift by zero, so the shift operand is the result.
Note that we could generalize the shift-by-zero transform into a shift-by-constant if all of the valid bits in the shift
amount are known, but that would have to be done in InstCombine rather than here because it would mean we need to create
a new shift instruction.
Differential Revision: http://reviews.llvm.org/D19874
llvm-svn: 269114
This intrinsic takes two arguments, ``%ptr`` and ``%offset``. It loads
a 32-bit value from the address ``%ptr + %offset``, adds ``%ptr`` to that
value and returns it. The constant folder specifically recognizes the form of
this intrinsic and the constant initializers it may load from; if a loaded
constant initializer is known to have the form ``i32 trunc(x - %ptr)``,
the intrinsic call is folded to ``x``.
LLVM provides that the calculation of such a constant initializer will
not overflow at link time under the medium code model if ``x`` is an
``unnamed_addr`` function. However, it does not provide this guarantee for
a constant initializer folded into a function body. This intrinsic can be
used to avoid the possibility of overflows when loading from such a constant.
Differential Revision: http://reviews.llvm.org/D18367
llvm-svn: 267223
No matter what value you OR in to A, the result of (or A, B) is going to be UGE A. When A and B are positive, it's SGE too. If A is negative, OR'ing a value into it can't make it positive, but can increase its value closer to -1, therefore (or A, B) is SGE A. Working through all possible combinations produces this truth table:
```
A is
+, -, +/-
F F F + B is
T F ? -
? F ? +/-
```
The related optimizations are flipping the 'slt' for 'sge' which always NOTs the result (if the result is known), and swapping the LHS and RHS while swapping the comparison predicate.
There are more idioms left to implement (aren't there always!) but I've stopped here because any more would risk becoming unreasonable for reviewers.
llvm-svn: 266939
I didn't notice any significant changes in the actual checks here;
all of these tests already used FileCheck, so a script can batch
update them in one shot.
This commit is just to show the value of automating this process:
We have uniform formatting as opposed to a mish-mash of check
structure that changes based on individual prefs and the current
fashion. This makes it simpler to update when we find a bug or
make an enhancement.
llvm-svn: 264457
The constant folding for sdiv and udiv has a big discrepancy between the
comments and the code, which looks like a typo. Currently, we're folding
X / undef pretty inconsistently:
0 / undef -> undef
C / undef -> 0
undef / undef -> 0
Whereas the comments state we do X / undef -> undef. The logic that
returns zero is actually commented as doing undef / X -> 0, despite that
the LHS isn't undef in many of the cases that hit it.
llvm-svn: 261813
Summary:
Added a test case just to make sure that isKnownNonZero() returns false
when we cannot guarantee that a ConstantExpr is a non-zero constant.
Reviewers: sanjoy, majnemer, mcrosier, nlewycky
Subscribers: nlewycky, mssimpso, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D16908
llvm-svn: 260544
This commit extends the patterns recognised by InstSimplify to also handle (x >> y) <= x in the same way as (x /u y) <= x.
The missing optimisation was found investigating why LLVM did not optimise away bound checks in a binary search: https://github.com/rust-lang/rust/pull/30917
Patch by Andrea Canciani!
Differential Revision: http://reviews.llvm.org/D16402
llvm-svn: 258422
This patch removes the isOperatorNewLike predicate since it was only being used to establish a non-null return value and we have attributes specifically for that purpose with generic handling. To keep approximate the same behaviour for existing frontends, I added the various operator new like (i.e. instances of operator new) to InferFunctionAttrs. It's not really clear to me why this isn't handled in Clang, but I didn't want to break existing code and any subtle assumptions it might have.
Once this patch is in, I'm going to start separating the isAllocLike family of predicates. These appear to be being used for a mixture of things which should be more clearly separated and documented. Today, they're being used to indicate (at least) aliasing facts, CSE-ability, and default values from an allocation site.
Differential Revision: http://reviews.llvm.org/D15820
llvm-svn: 256787
Summary:
This change teaches isImpliedCondition to prove things like
(A | 15) < L ==> (A | 14) < L
if the low 4 bits of A are known to be zero.
Depends on D14391
Reviewers: majnemer, reames, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14392
llvm-svn: 252673
This is a cleaned up version of a patch by John Regehr with permission. Originally found via the souper tool.
If we add an odd number to x, then bitwise-and the result with x, we know that the low bit of the result must be zero. Either it was zero in x originally, or the add cleared it in the temporary value. As a result, one of the two values anded together must have the bit cleared.
Differential Revision: http://reviews.llvm.org/D14315
llvm-svn: 252629
Summary:
Currently `isImpliedCondition` will optimize "I +_nuw C < L ==> I < L"
only if C is positive. This is an unnecessary restriction -- the
implication holds even if `C` is negative.
Reviewers: reames, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14369
llvm-svn: 252332
Summary:
This change adds a framework for adding more smarts to
`isImpliedCondition` around inequalities. Informally,
`isImpliedCondition` will now try to prove "A < B ==> C < D" by proving
"C <= A && B <= D", since then it follows "C <= A < B <= D".
While this change is in principle NFC, I could not think of a way to not
handle cases like "i +_nsw 1 < L ==> i < L +_nsw 1" (that ValueTracking
did not handle before) while keeping the change understandable. I've
added tests for these cases.
Reviewers: reames, majnemer, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14368
llvm-svn: 252331