Summary:
This moves
- SyntheticChildrenFrontEnd::CreateValueObjectFromExpression
- SyntheticChildrenFrontEnd::CreateValueObjectFromAddress
- SyntheticChildrenFrontEnd::CreateValueObjectFromData
outside the `#ifndef LLDB_DISABLE_PYTHON` since it doesn't seem to depend on python being available and indeed breaks the build when python is disabled.
Reviewers: granata.enrico
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D6646
llvm-svn: 224170
Function pointers had a summary generated for them bypassing formatters, directly as part of the ValueObject subsystem
This patch transitions that code into a hardcoded summary
llvm-svn: 223906
- adds a new flag to mark ValueObjects as "synthetic children generated"
- vends new Create functions as part of the SyntheticChildrenFrontEnd that set the flag automatically
- moves synthetic child providers over to using these new functions
No visible feature change, but preparatory work for feature change
llvm-svn: 223819
Two flags are introduced:
- preferred display language (as in, ObjC vs. C++)
- summary capping (as in, should a limit be put to the amount of data retrieved)
The meaning - if any - of these options is for individual formatters to establish
The topic of a subsequent commit will be to actually wire these through to individual data formatters
llvm-svn: 221482
The recent StringPrinter changes made this behavior the default, and the setting defaults to yes
If you want to change this behavior and see non-printables unescaped (e.g. "a\tb" as "a b"), set it to false
Fixes rdar://12969594
llvm-svn: 221399
The way to do this is to write a synthetic child provider for your type, and have it vend the (optional) get_value function.
If get_value is defined, and it returns a valid SBValue, that SBValue's value (as in lldb_private::Value) will be used as the synthetic ValueObject's Value
The rationale for doing things this way is twofold:
- there are many possible ways to define a "value" (SBData, a Python number, ...) but SBValue seems general enough as a thing that stores a "value", so we just trade values that way and that keeps our currency trivial
- we could introduce a new level of layering (ValueObjectSyntheticValue), a new kind of formatter (synthetic value producer), but that would complicate the model (can I have a dynamic with no synthetic children but synthetic value? synthetic value with synthetic children but no dynamic?), and I really couldn't see much benefit to be reaped from this added complexity in the matrix
On the other hand, just defining a synthetic child provider with a get_value but returning no actual children is easy enough that it's not a significant road-block to adoption of this feature
Comes with a test case
llvm-svn: 219330
This adds a definition for the TypeValidatorImpl_CXX destructor. Because the
destructor is first virtual method, and declared out-of-line, it also serves as
the key function. Since no definition was present, no virtual table for
TypeValidatorImpl_CXX was emitted, which results in link failures due to
references to undefined symbols.
Also add a definition for a TypeValidatorImpl contructor which was declared
out-of-line and referenced in a constructor for TypeValidatorImpl_CXX.
llvm-svn: 217375
Type Validators have the purpose of looking at a ValueObject, and making sure that there is nothing semantically wrong about the object's contents
For instance, if you have a class that represents a speed, the validator might trigger if the speed value is greater than the speed of light
This first patch hooks up the moving parts in the formatters subsystem, but does not link ValueObjects to TypeValidators, nor lets the SB API be exposed to validators
It also lacks the notion of Python validators
llvm-svn: 217277