This patch improves the support of DWARF5.
Particularly the reporting of source code locations.
Differential revision: https://reviews.llvm.org/D51935
llvm-svn: 342153
This also fixes a bug where SymbolFileDWARF was returning the same
function multiple times - this can happen if both mangled and demangled
names match the regex. Other lookup lookup functions had code to handle
this case, but it was forgotten here.
llvm-svn: 334277
Summary:
This patch adds the skeleton for implementing the DWARF v5 name index
class. All of the methods are stubbed out and will be implemented in
subsequent patches. The interesting part of the patch is the addition of
a "ignore-file-indexes" setting to the dwarf plugin which enables a
user to force using manual indexing path in lldb (for example as a
debugging aid). I have also added a test that verifies that file indexes
are used by default.
Reviewers: JDevlieghere, clayborg, jingham
Subscribers: mgorny, mehdi_amini, aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D47629
llvm-svn: 334088
Summary:
As discussed in https://bugs.llvm.org/show_bug.cgi?id=37317,
FindGlobalVariables does not properly handle the case where
append=false. As this doesn't seem to be used in the tree, this patch
removes the parameter entirely.
Reviewers: clayborg, jingham, labath
Reviewed By: clayborg
Subscribers: aprantl, lldb-commits, kubamracek, JDevlieghere
Differential Revision: https://reviews.llvm.org/D46885
Patch by Tom Tromey <ttromey@mozilla.com>.
llvm-svn: 333639
Summary:
This places the `if(m_using_apple_tables)` branches inside the
SymbolFileDWARF class behind an abstract DWARFIndex class. The class
currently has two implementations:
- AppleIndex, which searches using .apple_names and friends
- ManualIndex, which searches using a manually built index
Most of the methods of the class are very simple, and simply extract the
list of DIEs for the given name from the appropriate sub-table. The main
exception are the two GetFunctions overloads, which take a couple of
extra paramenters, including some callbacks. It was not possible to
split these up the same way as other methods, as here we were doing a
lot of post-processing on the results. The post-processing is similar
for the two cases, but not identical. I hope to factor these further in
separate patches.
Other interesting methods are:
- Preload(): do any preprocessing to make lookups faster (noop for
AppleIndex, forces a build of the lookup tables for ManualIndex).
- ReportInvalidDIEOffset(): Used to notify the users of an invalid index
(prints a message for AppleIndex, noop for ManualIndex).
- Dump(): dumps the index state (noop for AppleIndex, prints the lookup
tables for ManualIndex).
Reviewers: clayborg, JDevlieghere
Subscribers: mgorny, aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D46889
llvm-svn: 332719
In an effort to make the .debug_types patch smaller, breaking out the part that reads the .debug_types from object files into a separate patch
Differential Revision: https://reviews.llvm.org/D46529
llvm-svn: 331777
This patch by Greg Clayton drops the virtualization for DWARFPartialUnit.
The virtualization of DWARFUnit now matches more its LLVM counterpart.
DWZ patchset is going to be implementable without DWARFPartialUnit remapping.
https://reviews.llvm.org/D40474
This reverts commit 329423.
This reapplies commit r329305.
llvm-svn: 330084
The reverted commit changed DWARFUnit from https://reviews.llvm.org/D40466 and
https://reviews.llvm.org/D42892 that was prepared for DWARFPartialUnit and
made from it a superclass for DWARFTypeUnit. DWARFUnit's intention was:
DWARFUnit->DWARFSomeNameUnit->DWARFCompileUnit
DWARFUnit->DWARFSomeNameUnit->DWARFTypeUnit
DWARFUnit->DWARFPartialUnit
Discussed at: https://reviews.llvm.org/D45170
This reverts commit r329305.
llvm-svn: 329423
Many things that were in DWARFCompileUnit actually need to be in DWARFUnit. This patch moves all DWARFUnit specific things over into DWARFUnit and fixes the layering. This is in preparation for adding DWARFTypeUnit for the .debug_types patch.
Differential Revision: https://reviews.llvm.org/D45170
llvm-svn: 329305
Now the codebase can use the DWARFUnit superclass. It will make it later
seamlessly work also with DWARFPartialUnit for DWZ.
This patch is only a search-and-replace easily undone, nothing interesting
in it.
Differential revision: https://reviews.llvm.org/D42892
llvm-svn: 327810
Summary:
LLDB doesn't use this code, the code has no tests, and the code does suspicious
things like hashing pointers to strings instead of the strings themselves.
Subscribers: sanjoy, mgorny, JDevlieghere
Differential Revision: https://reviews.llvm.org/D43202
llvm-svn: 324925
This fixes a bug in -gmodules DWARF handling when debugging without a .dSYM bundle
that was particularly noticable when debugging LLVM itself.
Debugging without clang modules and DWO handling should be unaffected by this patch.
<rdar://problem/32436209>
llvm-svn: 321802
DWO/DWP should not be indexed directly.
Instead, the corresponding base file should be used.
This diff adds an assert to DWARFCompileUnit::Index
and adjusts the methods
SymbolFileDWARF::FindCompleteObjCDefinitionTypeForDIE,
SymbolFileDWARF::GetObjCMethodDIEOffsets accordingly.
Differential revision: https://reviews.llvm.org/D39825
llvm-svn: 318554
FindCompleteObjCDefinitionType is not used anywhere and there is no implementation of it, only a declaration.
Test plan: make check-lldb
Differential revision: https://reviews.llvm.org/D39884
llvm-svn: 317919
Summary:
The DWP (DWARF package) format is used to pack multiple dwo files
generated by split-dwarf into a single ELF file to make distributing
them easier. It is part of the DWARFv5 spec and can be generated by
dwp or llvm-dwp from a set of dwo files.
Caviats:
* Only the new version of the dwp format is supported (v2 in GNU
numbering schema and v5 in the DWARF spec). The old version (v1) is
already deprecated but binutils 2.24 still generates that one.
* Combining DWP files with module debugging is not yet supported.
Subscribers: emaste, mgorny, aprantl
Differential Revision: https://reviews.llvm.org/D36062
llvm-svn: 311775
Loading a shared library can require a large amount of work; rather than do that serially for each library,
this patch will allow parallelization of the symbols and debug info name indexes.
From scott.smith@purestorage.comhttps://reviews.llvm.org/D32598
llvm-svn: 301609
With this patch, the only dependency left is from Utility
to Host. After this is broken, Utility will finally be
standalone.
Differential Revision: https://reviews.llvm.org/D29909
llvm-svn: 295088
Summary:
The std::call_once implementation in libstdc++ has problems on few systems: NetBSD, OpenBSD and Linux PPC. LLVM ships with a homegrown implementation llvm::call_once to help on these platforms.
This change is required in the NetBSD LLDB port. std::call_once with libstdc++ results with crashing the debugger.
Sponsored by <The NetBSD Foundation>
Reviewers: labath, joerg, emaste, mehdi_amini, clayborg
Reviewed By: labath, clayborg
Subscribers: #lldb
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D29288
llvm-svn: 294202
This moves the following classes from Core -> Utility.
ConstString
Error
RegularExpression
Stream
StreamString
The goal here is to get lldbUtility into a state where it has
no dependendencies except on itself and LLVM, so it can be the
starting point at which to start untangling LLDB's dependencies.
These are all low level and very widely used classes, and
previously lldbUtility had dependencies up to lldbCore in order
to use these classes. So moving then down to lldbUtility makes
sense from both the short term and long term perspective in
solving this problem.
Differential Revision: https://reviews.llvm.org/D29427
llvm-svn: 293941
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
This introduces basic support for debugging OCaml binaries.
Use of the native compiler with DWARF emission support (see
https://github.com/ocaml/ocaml/pull/574) is required.
Available variables are considered as 64 bits unsigned integers,
their interpretation will be left to a OCaml-made debugging layer.
Differential revision: https://reviews.llvm.org/D22132
llvm-svn: 277443
I changed "m_is_optimized" in lldb_private::CompileUnit over to be a lldb::LazyBool so that it can be set to eLazyBoolCalculate if it needs to be parsed later. With SymbolFileDWARFDebugMap, we don't actually open the DWARF in the .o files for each compile unit until later, and we can't tell if a compile unit is optimized ahead of time. So to avoid pulling in all .o right away just so we can answer the questions of "is this compile unit optimized" we defer it until a point where we will have the compile unit parsed.
<rdar://problem/26068360>
llvm-svn: 274585
Summary:
In case of Dwo, DIERef stores a compile unit offset in the main object file, and not in the dwo.
The implementation of SymbolFileDWARFDwo::GetDIE inherited from SymbolFileDWARF tried to lookup
the compilation unit in the DWO based on the main object file offset (and failed). I change the
implementation to verify the DIERef indeed references compile unit belonging to this dwo and then
lookup the die based on the die offset alone.
Includes a couple of fixes for mismatched struct/class tags.
Reviewers: tberghammer, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D18646
llvm-svn: 265011
1 - DWARF in .o files with debug map in executable: we would place the compile unit index in the upper 32 bits of the 64 bit value and the lower 32 bits would be the DIE offset
2 - DWO: we would place the compile unit offset in the upper 32 bits of the 64 bit value and the lower 32 bits would be the DIE offset
There was a mixing and matching of this and it wasn't done consistently.
Major changes include:
The DIERef constructor that takes a lldb::user_id_t now requires a SymbolFileDWARF:
DIERef(lldb::user_id_t uid, SymbolFileDWARF *dwarf)
It is needed so that it can be decoded correctly. If it is DWARF in .o files with debug map in executable, then we get the right compile unit from the SymbolFileDWARFDebugMap, otherwise, we use the compile unit offset and DIE offset for DWO or normal DWARF.
The function:
lldb::user_id_t DIERef::GetUID() const;
Now becomes
lldb::user_id_t DIERef::GetUID(SymbolFileDWARF *dwarf) const;
Again, we need the DWARF file to encode it correctly.
This removes the need for "lldb::user_id_t SymbolFileDWARF::MakeUserID() const" and for bool SymbolFileDWARF::UserIDMatches (lldb::user_id_t uid) const". There were also many places were doing things inneficiently like:
1 - encode a dw_offset_t into a lldb::user_id_t
2 - call the public SymbolFile interface to resolve types using the lldb::user_id_t
3 - This would then decode the lldb::user_id_t into a DIERef, and then try to find that type.
There are many places that are now doing this more efficiently by storing DW_AT_type form values as DWARFFormValue objects and then making a DIERef from them and directly calling the underlying function to resolve the lldb_private::Type, lldb_private::CompilerType, lldb_private::CompilerDecl, lldb_private::CompilerDeclContext.
If there are any regressions in DWARF with DWO, we will need to fix any issues that arise since the original patch wasn't functional for the much more widely used DWARF in .o files with debug map.
<rdar://problem/25200976>
llvm-svn: 264909
Summary:
Since r264316, clang started adding DW_AT_GNU_dwo_name attribute to dwo files (previously, this
attribute was only present in main object files), breaking pretty much every dwo test. The
problem was that we were treating the presence of said attribute as a signal that we should look
for information in an external object file, and caused us to enter an infinite loop. I fix this
by making sure we do not go looking for an external dwo file if we already *are* parsing a dwo
file.
Reviewers: tberghammer, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D18547
llvm-svn: 264729
The purpose of these plugins is to make LLDB capable of debugging java
code JIT-ed by the android runtime.
Differential revision: http://reviews.llvm.org/D17616
llvm-svn: 262015
llvm::DenseSet<lldb_private::SymbolFile *> &searched_symbol_files
Each time a SymbolFile::FindTypes() is called, it needs to check the searched_symbol_files list to make sure it hasn't already been asked to find the type and return immediately if it has been checked. This will stop circular dependencies from also crashing LLDB during type queries.
This has proven to be an issue when debugging large applications on MacOSX that use DWARF in .o files.
<rdar://problem/24581488>
llvm-svn: 260434
Summary:
This change is relevant for inferiors compiled with GCC. GCC does not
emit complete debug info for std::basic_string<...>, and consequently, Clang
(the LLDB compiler) does not generate correct mangled names for certain
functions.
This change removes the hard-coded alternate names in
ItaniumABILanguageRuntime.cpp.
Before the hard-coded names were put in ItaniumABILanguageRuntime.cpp, one could
not evaluate std::string methods (ex. std::string::length). After putting in
the hard-coded names, one could evaluate them. However, it did not still
enable one to call methods on, say for example, std::vector<string>.
This change makes that possible.
There is some amount of incompleteness in this change. Consider the
following example:
std::string hello("hello"), world("world");
std::map<std::string, std::string> m;
m[hello] = world;
One can still not evaluate the expression "m[hello]" in LLDB. Will
address this issue in another pass.
Reviewers: jingham, vharron, evgeny777, spyffe, dawn
Subscribers: clayborg, dawn, lldb-commits
Differential Revision: http://reviews.llvm.org/D12809
llvm-svn: 257113
Summary:
DWARF 5 proposes a reinvented .debug_macro section. This change follows
that spec.
Currently, only GCC produces the .debug_macro section and hence
the added test is annottated with expectedFailureClang.
Reviewers: spyffe, clayborg, tberghammer
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D15437
llvm-svn: 255729
It was previously reverted due to issues that showed up only on linux. I was able to reproduce these issues and fix the underlying cause.
So this is the same patch as 254476 with the following two fixes:
- Fix not trying to complete classes that don't have external sources
- Fix ClangASTSource::CompleteType() to check the decl context of types that it finds by basename to ensure we don't complete a type "S" with a type like "std::S". Before this fix ClangASTSource::CompleteType() would accept _any_ type that had a matching basename and copy it into the other type.
<rdar://problem/22992457>
llvm-svn: 254980
This is done by finding the types that are forward declarations that come from a module, and loading that module's debug info in a separate lldb_private::Module, and copying the type over into the current module using a ClangASTImporter object. ClangASTImporter objects are already used to copy types from on clang::ASTContext to another for expressions so the type copying code has been around for a while.
A new FindTypes variant was added to SymbolVendor and SymbolFile:
size_t
SymbolVendor::FindTypes (const std::vector<CompilerContext> &context, bool append, TypeMap& types);
size_t
SymbolVendor::FindTypes (const std::vector<CompilerContext> &context, bool append, TypeMap& types);
The CompilerContext is a way to represent the exact context of a type and pass it through an agnostic API boundary so that we can find that exact context elsewhere in another file. This was required here because we can have a module that has submodules, both of which have a "foo" type.
I am not able to add tests for this yet as we currently don't build our C/C++/ObjC binaries with the clang binary that we build. There are some driver issues where it can't find the header files for the C and C++ standard library which makes compiling these tests hard. We can't also guarantee that if we are building with clang that it supporst the exact format of -gmodule debugging that we are trying to test. We have had other versions of clang that had a different implementation of -gmodule debugging that we are no longer supporting, so we can't enable tests if we are building with clang without compiling something and looking at the structure of the DWARF that was generated to ensure that it is the format we can actually use.
llvm-svn: 254476
Summary:
The solution to bug 24074,rL249673 needed
to parse the function information from the Dwarf in order
to set the SymbolContext. For that, GetFunction was called
for the parent in GetTypeForDIE, which parses the
ChildParameters and in the flow, GetTypeForDIE was called
for one of the sibling die and so an infinite
loop was triggered by calling GetFunction repeatedly for the
same function.
The changes in this revision modify the GetTypeForDIE to only
resolve the function context in the Type Lookup flow and so
prevent the infinite loop.
A testcase has also been added to check for regression in the
future and a test vector had been added to the testcase of
24074.
Reviewers: jingham, tberghammer, clayborg
Differential Revision: http://reviews.llvm.org/D14202
llvm-svn: 251917
Summary:
In bug 24074, the type information is not shown
correctly. This commit includes the following -
-> Changes for displaying correct type based on
current lexical scope for the command "image
lookup -t"
-> The corresponding testcase.
-> This patch was reverted due to segfaults in
FreeBSD and Mac, I fixed the problems for both now.
Reviewers: emaste, granata.enrico, jingham, clayborg
Differential Revision: http://reviews.llvm.org/D13290
llvm-svn: 249673
Summary:
In bug 24074, the type information is not shown
correctly. This commit includes the following -
-> Changes for displaying correct type based on
current lexical scope for the command "image
lookup -t"
-> The corresponding testcase.
Reviewers: jingham, ovyalov, spyffe, richard.mitton, clayborg
Differential Revision: http://reviews.llvm.org/D12404
llvm-svn: 248366
Summary:
This is no longer related to Clang and is just an opaque pointer
to data for a compiler type.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D13039
llvm-svn: 248288
Summary:
With the recent changes to separate clang from the core structures
of LLDB, many inclusions of clang headers can be removed.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12954
llvm-svn: 248004
This cleans up type systems to be more pluggable. Prior to this we had issues:
- Module, SymbolFile, and many others has "ClangASTContext &GetClangASTContext()" functions. All have been switched over to use "TypeSystem *GetTypeSystemForLanguage()"
- Cleaned up any places that were using the GetClangASTContext() functions to use TypeSystem
- Cleaned up Module so that it no longer has dedicated type system member variables:
lldb::ClangASTContextUP m_ast; ///< The Clang AST context for this module.
lldb::GoASTContextUP m_go_ast; ///< The Go AST context for this module.
Now we have a type system map:
typedef std::map<lldb::LanguageType, lldb::TypeSystemSP> TypeSystemMap;
TypeSystemMap m_type_system_map; ///< A map of any type systems associated with this module
- Many places in code were using ClangASTContext static functions to place with CompilerType objects and add modifiers (const, volatile, restrict) and to make typedefs, L and R value references and more. These have been made into CompilerType functions that are abstract:
class CompilerType
{
...
//----------------------------------------------------------------------
// Return a new CompilerType that is a L value reference to this type if
// this type is valid and the type system supports L value references,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
GetLValueReferenceType () const;
//----------------------------------------------------------------------
// Return a new CompilerType that is a R value reference to this type if
// this type is valid and the type system supports R value references,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
GetRValueReferenceType () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a const modifier to this type if
// this type is valid and the type system supports const modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddConstModifier () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a volatile modifier to this type if
// this type is valid and the type system supports volatile modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddVolatileModifier () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a restrict modifier to this type if
// this type is valid and the type system supports restrict modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddRestrictModifier () const;
//----------------------------------------------------------------------
// Create a typedef to this type using "name" as the name of the typedef
// this type is valid and the type system supports typedefs, else return
// an invalid type.
//----------------------------------------------------------------------
CompilerType
CreateTypedef (const char *name, const CompilerDeclContext &decl_ctx) const;
};
Other changes include:
- Removed "CompilerType TypeSystem::GetIntTypeFromBitSize(...)" and CompilerType TypeSystem::GetFloatTypeFromBitSize(...) and replaced it with "CompilerType TypeSystem::GetBuiltinTypeForEncodingAndBitSize(lldb::Encoding encoding, size_t bit_size);"
- Fixed code in Type.h to not request the full type for a type for no good reason, just request the forward type and let the type expand as needed
llvm-svn: 247953
Summary: Supports the parsing of the "using namespace XXX" and "using XXX::XXX" directives. Added ambiguity errors when it two decls with the same name are encountered (see comments in TestCppNsImport). Fixes using directives being duplicated for anonymous namespaces. Fixes GetDeclForUID for specification DIEs.
Reviewers: sivachandra, chaoren, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12897
llvm-svn: 247836
Split-dwarf uses a different header format to specify the address range
for the elements of the location lists.
Differential revision: http://reviews.llvm.org/D12880
llvm-svn: 247789
Summary: SymbolFileDWARF now creates VarDecl and BlockDecl and adds them to the Decl tree. Then, in ClangExpressionDeclMap it uses the Decl tree to search for a variable. This fixes lots of variable scoping problems.
Reviewers: sivachandra, chaoren, spyffe, clayborg
Subscribers: tberghammer, jingham, lldb-commits
Differential Revision: http://reviews.llvm.org/D12658
llvm-svn: 247746