Summary:
If horizontal reduction tree starts from the binary operation that is
used in PHI node, but this PHI is not used in horizontal reduction, we
may end up with extra addition of this PHI node after vectorization.
Here is an example:
```
%phi = phi i32 [ %tmp, %end], ...
...
%tmp = add i32 %tmp1, %tmp2
end:
```
after vectorization we always have something like:
```
%phi = phi i32 [ %tmp, %end], ...
...
%red = extractelement <8 x 32> %vec.red, 0
%tmp = add i32 %red, %phi
end:
```
even if `%phi` is not used in reduction tree. Patch considers these PHI
nodes as extra arguments and considers them in the final result iff they
really used in reduction.
Reviewers: mkuper, hfinkel, mzolotukhin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30409
llvm-svn: 296606
The practice in LV is that we emit analysis remarks and then finally report
either a missed or applied remark on the final decision whether vectorization
is taking place. On this code path, we were closing with an analysis remark.
llvm-svn: 296578
for VectorizeTree() API.This API uses it for proper mask computation to be used in shufflevector IR.
The fix is to compute the mask for out of order memory accesses while building the vectorizable tree
instead of actual vectorization of vectorizable tree.
Reviewers: mkuper
Differential Revision: https://reviews.llvm.org/D30159
Change-Id: Id1e287f073fa4959713ba545fa4254db5da8b40d
llvm-svn: 296575
This patch merges the existing floating-point induction variable widening code
into the integer induction variable widening code, creating a single set of
functions for both kinds of inductions. The primary motivation for doing this
is to enable vector phi node creation for floating-point induction variables.
Differential Revision: https://reviews.llvm.org/D30211
llvm-svn: 296145
result
Summary:
If the same value is used several times as an extra value, SLP
vectorizer takes it into account only once instead of actual number of
using.
For example:
```
int val = 1;
for (int y = 0; y < 8; y++) {
for (int x = 0; x < 8; x++) {
val = val + input[y * 8 + x] + 3;
}
}
```
We have 2 extra rguments: `1` - initial value of horizontal reduction
and `3`, which is added 8*8 times to the reduction. Before the patch we
added `1` to the reduction value and added once `3`, though it must be
added 64 times.
Reviewers: mkuper, mzolotukhin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30262
llvm-svn: 295972
result
Summary:
If the same value is used several times as an extra value, SLP
vectorizer takes it into account only once instead of actual number of
using.
For example:
```
int val = 1;
for (int y = 0; y < 8; y++) {
for (int x = 0; x < 8; x++) {
val = val + input[y * 8 + x] + 3;
}
}
```
We have 2 extra rguments: `1` - initial value of horizontal reduction
and `3`, which is added 8*8 times to the reduction. Before the patch we
added `1` to the reduction value and added once `3`, though it must be
added 64 times.
Reviewers: mkuper, mzolotukhin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30262
llvm-svn: 295956
result
Summary:
If the same value is used several times as an extra value, SLP
vectorizer takes it into account only once instead of actual number of
using.
For example:
```
int val = 1;
for (int y = 0; y < 8; y++) {
for (int x = 0; x < 8; x++) {
val = val + input[y * 8 + x] + 3;
}
}
```
We have 2 extra rguments: `1` - initial value of horizontal reduction
and `3`, which is added 8*8 times to the reduction. Before the patch we
added `1` to the reduction value and added once `3`, though it must be
added 64 times.
Reviewers: mkuper, mzolotukhin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30262
llvm-svn: 295949
Implement isLegalToVectorizeLoadChain for AMDGPU to avoid
producing private address spaces accesses that will need to be
split up later. This was doing the wrong thing in the case
where the queried chain was an even number of elements.
A possible <4 x i32> store was being split into
store <2 x i32>
store i32
store i32
rather than
store <2 x i32>
store <2 x i32>
when legal.
llvm-svn: 295933
Summary:
If the same value is used several times as an extra value, SLP
vectorizer takes it into account only once instead of actual number of
using.
For example:
```
int val = 1;
for (int y = 0; y < 8; y++) {
for (int x = 0; x < 8; x++) {
val = val + input[y * 8 + x] + 3;
}
}
```
We have 2 extra rguments: `1` - initial value of horizontal reduction
and `3`, which is added 8*8 times to the reduction. Before the patch we
added `1` to the reduction value and added once `3`, though it must be
added 64 times.
Reviewers: mkuper, mzolotukhin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30262
llvm-svn: 295868
Prevent memory objects of different address spaces to be part of
the same load/store groups when analysing interleaved accesses.
This is fixing pr31900.
Reviewers: HaoLiu, mssimpso, mkuper
Reviewed By: mssimpso, mkuper
Subscribers: llvm-commits, efriedma, mzolotukhin
Differential Revision: https://reviews.llvm.org/D29717
This reverts r295042 (re-applies r295038) with an additional fix for the
buildbot problem.
llvm-svn: 295858
We previously only created a vector phi node for an induction variable if its
step had a constant integer type. However, the step actually only needs to be
loop-invariant. We only handle inductions having loop-invariant steps, so this
patch should enable vector phi node creation for all integer induction
variables that will be vectorized.
Differential Revision: https://reviews.llvm.org/D29956
llvm-svn: 295456
This reapplies commit r294967 with a fix for the execution time regressions
caught by the clang-cmake-aarch64-quick bot. We now extend the truncate
optimization to non-primary induction variables only if the truncate isn't
already free.
Differential Revision: https://reviews.llvm.org/D29847
llvm-svn: 295063
back into a vector
Previously the cost of the existing ExtractElement/ExtractValue
instructions was considered as a dead cost only if it was detected that
they have only one use. But these instructions may be considered
dead also if users of the instructions are also going to be vectorized,
like:
```
%x0 = extractelement <2 x float> %x, i32 0
%x1 = extractelement <2 x float> %x, i32 1
%x0x0 = fmul float %x0, %x0
%x1x1 = fmul float %x1, %x1
%add = fadd float %x0x0, %x1x1
```
This can be transformed to
```
%1 = fmul <2 x float> %x, %x
%2 = extractelement <2 x float> %1, i32 0
%3 = extractelement <2 x float> %1, i32 1
%add = fadd float %2, %3
```
because though `%x0` and `%x1` have 2 users each other, these users are
part of the vectorized tree and we can consider these `extractelement`
instructions as dead.
Differential Revision: https://reviews.llvm.org/D29900
llvm-svn: 295056
Prevent memory objects of different address spaces to be part of
the same load/store groups when analysing interleaved accesses.
This is fixing pr31900.
Reviewers: HaoLiu, mssimpso, mkuper
Reviewed By: mssimpso, mkuper
Subscribers: llvm-commits, efriedma, mzolotukhin
Differential Revision: https://reviews.llvm.org/D29717
llvm-svn: 295038
This reverts commit r294967. This patch caused execution time slowdowns in a
few LLVM test-suite tests, as reported by the clang-cmake-aarch64-quick bot.
I'm reverting to investigate.
llvm-svn: 294973
This patch extends the optimization of truncations whose operand is an
induction variable with a constant integer step. Previously we were only
applying this optimization to the primary induction variable. However, the cost
model assumes the optimization is applied to the truncation of all integer
induction variables (even regardless of step type). The transformation is now
applied to the other induction variables, and I've updated the cost model to
ensure it is better in sync with the transformation we actually perform.
Differential Revision: https://reviews.llvm.org/D29847
llvm-svn: 294967
reductions.
Currently, LLVM supports vectorization of horizontal reduction
instructions with initial value set to 0. Patch supports vectorization
of reduction with non-zero initial values. Also, it supports a
vectorization of instructions with some extra arguments, like:
```
float f(float x[], int a, int b) {
float p = a % b;
p += x[0] + 3;
for (int i = 1; i < 32; i++)
p += x[i];
return p;
}
```
Patch allows vectorization of this kind of horizontal reductions.
Differential Revision: https://reviews.llvm.org/D29727
llvm-svn: 294934
Summary:
This patch starts the implementation as discuss in the following RFC: http://lists.llvm.org/pipermail/llvm-dev/2016-October/106532.html
When optimization duplicates code that will scale down the execution count of a basic block, we will record the duplication factor as part of discriminator so that the offline process tool can find the duplication factor and collect the accurate execution frequency of the corresponding source code. Two important optimization that fall into this category is loop vectorization and loop unroll. This patch records the duplication factor for these 2 optimizations.
The recording will be guarded by a flag encode-duplication-in-discriminators, which is off by default.
Reviewers: probinson, aprantl, davidxl, hfinkel, echristo
Reviewed By: hfinkel
Subscribers: mehdi_amini, anemet, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D26420
llvm-svn: 294782
We previously only created a vector phi node for an induction variable if its
type matched the type of the canonical induction variable.
Differential Revision: https://reviews.llvm.org/D29776
llvm-svn: 294755
Making the cost model selecting between Interleave, GatherScatter or Scalar vectorization form of memory instruction.
The right decision should be done for non-consecutive memory access instrcuctions that may have more than one vectorization solution.
This patch includes the following changes:
- Cost Model calculates the cost of Load/Store vector form and choose the better option between Widening, Interleave, GatherScactter and Scalarization. Cost Model keeps the widening decision.
- Arrays of Uniform and Scalar values are moved from Legality to Cost Model.
- Cost Model collects Uniforms and Scalars per VF. The collection is based on CM decision map of Loadis/Stores vectorization form.
- Vectorization of memory instruction is performed according to the CM decision.
Differential Revision: https://reviews.llvm.org/D27919
llvm-svn: 294503
This breaks when one of the extra values is also a scalar that
participates in the same vectorization tree which we'll end up
reducing.
llvm-svn: 294245
Currently LLVM supports vectorization of horizontal reduction
instructions with initial value set to 0. Patch supports vectorization
of reduction with non-zero initial values. Also it supports a
vectorization of instructions with some extra arguments, like:
float f(float x[], int a, int b) {
float p = a % b;
p += x[0] + 3;
for (int i = 1; i < 32; i++)
p += x[i];
return p;
}
Patch allows vectorization of this kind of horizontal reductions.
Differential Revision: https://reviews.llvm.org/D28961
llvm-svn: 293994
This patch moves some helper functions related to interleaved access
vectorization out of LoopVectorize.cpp and into VectorUtils.cpp. We would like
to use these functions in a follow-on patch that improves interleaved load and
store lowering in (ARM/AArch64)ISelLowering.cpp. One of the functions was
already duplicated there and has been removed.
Differential Revision: https://reviews.llvm.org/D29398
llvm-svn: 293788
By calling getScalarizationOverhead with the CallInst instead of the types of
its arguments, we make sure that only unique call arguments are added to the
scalarization cost.
getScalarizationOverhead() is extended to handle calls by only passing on the
actual call arguments (which is not all the operands).
This also eliminates a wrapper function with the same name.
review: Hal Finkel
llvm-svn: 293459
The jumbled scalar loads will be sorted while building the tree and these accesses will be marked to generate shufflevector after the vectorized load with proper mask.
Reviewers: hfinkel, mssimpso, mkuper
Differential Revision: https://reviews.llvm.org/D26905
Change-Id: I9c0c8e6f91a00076a7ee1465440a3f6ae092f7ad
llvm-svn: 293386
Some checks in SLP horizontal reduction analysis function are performed
several times, though it is enough to perform these checks only once
during an initial attempt at adding candidate for the reduction
instruction/reduced value.
Differential Revision: https://reviews.llvm.org/D29175
llvm-svn: 293274
change the set of uniform instructions in the loop causing an assert
failure.
The problem is that the legalization checking also builds data
structures mapping various facts about the loop body. The immediate
cause was the set of uniform instructions. If these then change when
LCSSA is formed, the data structures would already have been built and
become stale. The included test case triggered an assert in loop
vectorize that was reduced out of the new PM's pipeline.
The solution is to form LCSSA early enough that no information is cached
across the changes made. The only really obvious position is outside of
the main logic to vectorize the loop. This also has the advantage of
removing one case where forming LCSSA could mutate the loop but we
wouldn't track that as a "Changed" state.
If it is significantly advantageous to do some legalization checking
prior to this, we can do a more careful positioning but it seemed best
to just back off to a safe position first.
llvm-svn: 293168
Refactoring to remove duplications of this method.
New method getOperandsScalarizationOverhead() that looks at the present unique
operands and add extract costs for them. Old behaviour was to just add extract
costs for one operand of the type always, which still happens in
getArithmeticInstrCost() if no operands are provided by the caller.
This is a good start of improving on this, but there are more places
that can be improved by using getOperandsScalarizationOverhead().
Review: Hal Finkel
https://reviews.llvm.org/D29017
llvm-svn: 293155
instructions.
If number of instructions in horizontal reduction list is not power of 2
then only PowerOf2Floor(NumberOfInstructions) last elements are actually
vectorized, other instructions remain scalar. Patch tries to vectorize
the remaining elements either.
Differential Revision: https://reviews.llvm.org/D28959
llvm-svn: 293042
Removed data members ReduxWidth and MinVecRegSize + some C++11 stylish
improvements.
Differential Revision: https://reviews.llvm.org/D29010
llvm-svn: 292899
This changes the vectorizer to explicitly use the loopsimplify and lcssa utils,
instead of "requiring" the transformations as if they were analyses.
This is not NFC, since it changes the LCSSA behavior - we no longer run LCSSA
for all loops, but rather only for the loops we expect to modify.
Differential Revision: https://reviews.llvm.org/D28868
llvm-svn: 292456
We currently check whether a reduction has a single outside user. We don't
really need to require that - we just need to make sure a single value is
used externally. The number of external users of that value shouldn't actually
matter.
Differential Revision: https://reviews.llvm.org/D28830
llvm-svn: 292424
If a memory instruction will be vectorized, but it's pointer operand is
non-consecutive-like, the instruction is a gather or scatter operation. Its
pointer operand will be non-uniform. This should fix PR31671.
Reference: https://llvm.org/bugs/show_bug.cgi?id=31671
Differential Revision: https://reviews.llvm.org/D28819
llvm-svn: 292254