The OpenACC standard specifies an `atomic` construct in section 2.12 (of
3.3 spec), used to ensure that a specific location is accessed or
updated atomically. Four different clauses are allowed: `read`, `write`,
`update`, or `capture`. If no clause appears, it is as if `update` is
used.
The OpenMP specification defines the same clauses for `omp atomic`. The
types of expression and the clauses in the OpenACC spec match the OpenMP
spec exactly. The main difference is that the OpenMP specification is a
superset - it includes clauses for `hint` and `memory order`. It also
allows conditional expression statements. But otherwise, the expression
definition matches.
Thus, for OpenACC, we refactor and reuse the OpenMP implementation as
follows:
* The atomic operations are duplicated in OpenACC dialect. This is
preferable so that each language's semantics are precisely represented
even if specs have divergence.
* However, since semantics overlap, a common interface between the
atomic operations is being added. The semantics for the interfaces are
not generic enough to be used outside of OpenACC and OpenMP, and thus
new folders were added to hold common pieces of the two dialects.
* The atomic interfaces define common accessors (such as getting `x` or
`v`) which match the OpenMP and OpenACC specs. It also adds common
verifiers intended to be called by each dialect's operation verifier.
* The OpenMP write operation was updated to use `x` and `expr` to be
consistent with its other operations (that use naming based on spec).
The frontend lowering necessary to generate the dialect can also be
reused. This will be done in a follow up change.
This patch permits map operands to be not specified for the target
data operation. Also emit an error if none of the map, use_device_addr,
or use_device_ptr operands are specified.
Reviewed By: TIFitis
Differential Revision: https://reviews.llvm.org/D156170
This patch implements an early outlining transform of omp.target operations in
flang. The pass is needed because optimizations may cross target op region
boundaries, but with the outlining the resulting functions only contain a
single omp.target op plus a func.return, so there should not be any opportunity
to optimize across region boundaries.
The patch also adds an interface to be able to store and retrieve the parent
function name of the original target operation. This is needed to be able to
create correct kernel function names when lowering to LLVM-IR.
Reviewed By: kiranchandramohan, domada
Differential Revision: https://reviews.llvm.org/D154879
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This patch updates all remaining uses of the deprecated functionality in
mlir/. This was done with clang-tidy as described below and further
modifications to GPUBase.td and OpenMPOpsInterfaces.td.
Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
additional check:
main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
them to a pure state.
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-header-filter=mlir/ mlir/* -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
```
Differential Revision: https://reviews.llvm.org/D151542
This reverts commit aa6b47cdaf.
And adds a fix (adding missing libraries
to CMakeLists.txt for the OpenMPDialect)
that allows failing builds to succeed.
This attribute represents the OpenMP declare target directive, it marks a function
or global as declare target by being present but also contains information on
the device_type and capture clause (link or to). It being an attribute allows it to
mark existing constructs and be converted trivially on lowering from the OpenMP
dialect to MLIR using amendOperation.
An interface has been made for the declare target attribute, with several helper
methods for managing the attribute, this interface can be applied to MLIR
operations that are allowed to be marked as declare target (as an example, it
is by default applied to func.func, LLVMFunc, fir.GlobalOps and LLVMGlobalOps).
Reviewers: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D150328
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Context:
* https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…"
* Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This follows a previous patch that updated calls
`op.cast<T>()-> cast<T>(op)`. However some cases could not handle an
unprefixed `cast` call due to occurrences of variables named cast, or
occurring inside of class definitions which would resolve to the method.
All C++ files that did not work automatically with `cast<T>()` are
updated here to `llvm::cast` and similar with the intention that they
can be easily updated after the methods are removed through a
find-replace.
See https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
for the clang-tidy check that is used and then update printed
occurrences of the function to include `llvm::` before.
One can then run the following:
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-export-fixes /tmp/cast/casts.yaml mlir/*\
-header-filter=mlir/ -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
```
Differential Revision: https://reviews.llvm.org/D150348
This patch prevents constant operations defined inside `omp.target` from being
hoisted out and into their parent functions by canonicalization passes.
Differential Revision: https://reviews.llvm.org/D148349
This commit adds the OffloadModuleInterface to the OpenMP dialect,
which will implement future module attribute get/set's for offloading.
Currently it implements set and get's for the omp.is_device attribute,
which is promoted to a real attribute in this commit as well (primarily
to allow switch cases to work nicely with it for future work and to keep
consistency with future module attributes).
This interface is attached to mlir::ModuleOp's on registration of the
OpenMPDialect and should be accessible anywhere the OpenMP
dialect is registered and initialized.
Reviewers: kiranchandramohan, awarzynski
Differential Revision: https://reviews.llvm.org/D146850
Adds the -fopenmp-is-device flag to bbc and Flang's -fc1 (but not flang-new) and in addition adds an omp.is_device attribute onto the module when fopenmp is passed, this is a boolean attribute that is set to false or true dependent on if fopenmp-is-device is specified alongside the fopenmp flag on the commandline when invoking flang or bbc.
Reviewers:
awarzynski
kiranchandramohan
Differential Revision: https://reviews.llvm.org/D144864
This patch adds support for the OpenMP 4.0 depend clause (in, out,
inout) of the task construct to the definition of the OpenMP MLIR
dialect and translation from MLIR to LLVM IR using OMPIRBuilder.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D142730
The current OpenMP implementation assumes the use of typed pointers (or rather typed pointer like types). Given the support for typed pointers in LLVM is now pending removal, the OpenMP Dialect should be able to support opaque pointers as well, given that any users of it must lower OpenMP through the LLVM Dialect.
This patch fixes the above and adds support for using LLVM opaque pointers with the OpenMP dialect. This is implemented by making all related code not make use of the element type of pointer arguments. The few (one) op requiring a pointer element type now use an explicit `TypeAttr` for representing the element type.
More concretely, the list of changes are:
* `omp.atomic.read` now has an extra `TypeAttr` (also in syntax) which is the element type of the values read and stored from the operands
* `omp.reduction` now has an type argument in the syntax for both the accmulator and operand since the operand type can no longer be inferred from the accumulator
* `OpenMPToLLVMIRTranslation.cpp` was rewritten to never query element types of pointers
* Adjusted the verifier to be able to handle pointers without element types
Differential Revision: https://reviews.llvm.org/D143582
This includes a basic implementation for the OpenMP 5.1 Target Data, Target Exit Data and Target Enter Data constructs
operation.
TODO:
- Depend clause support for Target Enter and Exit Data.
- Mapper and Iterator value support for Map Type Modifiers.
- Verifier for the operations.
Co-authored-by: abidmalikwaterloo <amalik@bnl.gov>
Co-authored-by: raghavendra <Raghu.Maddhipatla@amd.com>
Differential Revision: https://reviews.llvm.org/D131915
simd nontemporal construct is represented as a list of variables
which have low locality accross simd iterations
Added verifier of nontemporal clause. MLIR tests were updated to test
correctness of MLIR definition of nontemporal clause.
Differential Revision: https://reviews.llvm.org/D140553
Reviewed By: kiranchandramohan
This is part of an effort to migrate from llvm::Optional to
std::optional. This patch changes the way mlir-tblgen generates .inc
files, and modifies tests and documentation appropriately. It is a "no
compromises" patch, and doesn't leave the user with an unpleasant mix of
llvm::Optional and std::optional.
A non-trivial change has been made to ControlFlowInterfaces to split one
constructor into two, relating to a build failure on Windows.
See also: https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Signed-off-by: Ramkumar Ramachandra <r@artagnon.com>
Differential Revision: https://reviews.llvm.org/D138934
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
This patch replaces NoneType() and NoneType::None with None in
preparation for migration from llvm::Optional to std::optional.
In the std::optional world, we are not guranteed to be able to
default-construct std::nullopt_t or peek what's inside it, so neither
NoneType() nor NoneType::None has a corresponding expression in the
std::optional world.
Once we consistently use None, we should even be able to replace the
contents of llvm/include/llvm/ADT/None.h with something like:
using NoneType = std::nullopt_t;
inline constexpr std::nullopt_t None = std::nullopt;
to ease the migration from llvm::Optional to std::optional.
Differential Revision: https://reviews.llvm.org/D138376
simd aligned construct is represented as pair of variable which needs
to be aligned and corresponding alignment value.
Added parser, printer and verifier of aligned clause. MLIR tests were
updated to test correctness of MLIR definition of aligned clause.
Differential Revision: https://reviews.llvm.org/D135865
Reviewed By: kiranchandramohan
This allows for incrementally updating the old API usages without
needing to update everything at once. These will be left on Both
for a little bit and then flipped to prefixed when all APIs have been
updated.
Differential Revision: https://reviews.llvm.org/D134386
This supports translation from MLIR to LLVM IR using OMPIRBuilder for
OpenMP safelen clause in SIMD construct.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D132245
This patch adds canonicalization conditions for omp.atomic.update thus
eliminating it when it becomes just a write or a no-op due to other
changes during canonicalization.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D126531
1. Remove the redundant collapse clause in MLIR OpenMP worksharing-loop
operation.
2. Fix several typos.
3. Refactor the chunk size type conversion since CreateSExtOrTrunc has
both type check and type conversion.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D128338
This patch adds omp.taskgroup operation according to OpenMP 5.0 2.17.6.
Also added tests for the same.
Reviewed By: kiranchandramohan, peixin
Differential Revision: https://reviews.llvm.org/D127250
This patch adds tests for memory_order clause for atomic update and
capture operations. This patch also adds a check for making sure that
the operations inside and omp.atomic.capture region do not specify the
memory_order clause.
Reviewed By: kiranchandramohan, peixin
Differential Revision: https://reviews.llvm.org/D126195
This patch makes sure that the address dereferences to value in
omp.atomic.write operation.
Reviewed By: kiranchandramohan, peixin
Differential Revision: https://reviews.llvm.org/D126272
MLIR has a common pattern for "arguments" that uses syntax
like `%x : i32 {attrs} loc("sourceloc")` which is implemented
in adhoc ways throughout the codebase. The approach this uses
is verbose (because it is implemented with parallel arrays) and
inconsistent (e.g. lots of things drop source location info).
Solve this by introducing OpAsmParser::Argument and make addRegion
(which sets up BlockArguments for the region) take it. Convert the
world to propagating this down. This means that we correctly
capture and propagate source location information in a lot more
cases (e.g. see the affine.for testcase example), and it also
simplifies much code.
Differential Revision: https://reviews.llvm.org/D124649
I would ideally like to eliminate 'requiredOperandCount' as a bit of
verification that should be in the client side, but it is much more
widely used than I expected. Just tidy some pieces up around it given
we can't drop it immediately.
NFC.
Differential Revision: https://reviews.llvm.org/D124629
The asm parser had a notional distinction between parsing an
operand (like "%foo" or "%4#3") and parsing a region argument
(which isn't supposed to allow a result number like #3).
Unfortunately the implementation has two problems:
1) It didn't actually check for the result number and reject
it. parseRegionArgument and parseOperand were identical.
2) It had a lot of machinery built up around it that paralleled
operand parsing. This also was functionally identical, but
also had some subtle differences (e.g. the parseOptional
stuff had a different result type).
I thought about just removing all of this, but decided that the
missing error checking was important, so I reimplemented it with
a `allowResultNumber` flag on parseOperand. This keeps the
codepaths unified and adds the missing error checks.
Differential Revision: https://reviews.llvm.org/D124470