Allow specifying 'nomerge' attribute for function pointers,
e.g. like in the following C code:
extern void (*foo)(void) __attribute__((nomerge));
void bar(long i) {
if (i)
foo();
else
foo();
}
With the goal to attach 'nomerge' to both calls done through 'foo':
@foo = external local_unnamed_addr global ptr, align 8
define dso_local void @bar(i64 noundef %i) local_unnamed_addr #0 {
; ...
%0 = load ptr, ptr @foo, align 8, !tbaa !5
; ...
if.then:
tail call void %0() #1
br label %if.end
if.else:
tail call void %0() #1
br label %if.end
if.end:
ret void
}
; ...
attributes #1 = { nomerge ... }
Report a warning in case if 'nomerge' is specified for a variable that
is not a function pointer, e.g.:
t.c:2:22: warning: 'nomerge' attribute is ignored because 'j' is not a function pointer [-Wignored-attributes]
2 | int j __attribute__((nomerge));
| ^
The intended use-case is for BPF backend.
BPF provides a sort of "standard library" functions that are called
helpers. BPF also verifies usage of these helpers before program
execution. Because of limitations of verification / runtime model it
is important to keep calls to some of such helpers from merging.
An example could be found by the link [1], there input C code:
if (data_end - data > 1024) {
bpf_for_each_map_elem(&map1, cb, &cb_data, 0);
} else {
bpf_for_each_map_elem(&map2, cb, &cb_data, 0);
}
Is converted to bytecode equivalent to:
if (data_end - data > 1024)
tmp = &map1;
else
tmp = &map2;
bpf_for_each_map_elem(tmp, cb, &cb_data, 0);
However, BPF verification/runtime requires to use the same map address
for each particular `bpf_for_each_map_elem()` call.
The 'nomerge' attribute is a perfect match for this situation, but
unfortunately BPF helpers are declared as pointers to functions:
static long (*bpf_for_each_map_elem)(void *map, ...) = (void *) 164;
Hence, this commit, allowing to use 'nomerge' for function pointers.
[1] https://lore.kernel.org/bpf/03bdf90f-f374-1e67-69d6-76dd9c8318a4@meta.com/
Differential Revision: https://reviews.llvm.org/D152986
This patch relaxes the front end AIX diagnostics added in D102070 to accept the
local-exec TLS model, as we plan to support this model in a series of future patches.
The diagnostics are relaxed when local-exec is used as a compiler option to
`-ftls-model=*` and in the `__attribute__((tls_model("local-exec")))` attribute.
Differential Revision: https://reviews.llvm.org/D149596
This patch adds the Parse and Sema support for RegularKeyword attributes,
following on from a previous patch that added Attr.td support.
The patch is quite large. However, nothing outside the tests is
specific to the first RegularKeyword attribute (__arm_streaming).
The patch should therefore be a one-off, up-front cost. Other
attributes just need an entry in Attr.td and the usual Sema support.
The approach taken in the patch is that the keywords can be used with
any language version. If standard attributes were added in language
version Y, the keyword rules for version X<Y are the same as they were
for version Y (to the extent possible). Any extensions beyond Y are
handled in the same way for both keywords and attributes. This ensures
that existing C++11 successors like C++17 are not treated differently
from versions that have yet to be defined.
Some notes on the implementation:
* The patch emits errors rather than warnings for diagnostics that
relate to keywords.
* Where possible, the patch drops “attribute” from diagnostics
relating to keywords.
* One exception to the previous point is that warnings about C++
extensions do still mention attributes. The use there seemed OK
since the diagnostics are noting a change in the production rules.
* If a diagnostic string needs to be different for keywords and
attributes, the patch standardizes on passing the attribute/
name/token followed by 0 for attributes and 1 for keywords.
* Although the patch updates warn_attribute_wrong_decl_type_str,
warn_attribute_wrong_decl_type, and warn_attribute_wrong_decl_type,
only the error forms of these strings are used for keywords.
* I couldn't trigger the warnings in checkUnusedDeclAttributes,
even for existing attributes. An assert on the warnings caused
no failures in the testsuite. I think in practice all standard
attributes would be diagnosed before this.
* The patch drops a call to standardAttributesAllowed in
ParseFunctionDeclarator. This is because MaybeParseCXX11Attributes
checks the same thing itself, where appropriate.
* The new tests are based on c2x-attributes.c and
cxx0x-attributes.cpp. The C++ test also incorporates a version of
cxx11-base-spec-attributes.cpp. The FIXMEs are carried across from
the originals.
Differential Revision: https://reviews.llvm.org/D148702
Platform-specific language extensions often want to provide a way of
indicating that certain functions should be called in a different way,
compiled in a different way, or otherwise treated differently from a
“normal” function. Honoring these indications is often required for
correctness, rather being than an optimization/QoI thing.
If a function declaration has a property P that matters for correctness,
it will be ODR-incompatible with a function that does not have property P.
If a function type has a property P that affects the calling convention,
it will not be two-way compatible with a function type that does not
have property P. These properties therefore affect language semantics.
That in turn means that they cannot be treated as standard [[]]
attributes.
Until now, many of these properties have been specified using GNU-style
attributes instead. GNU attributes have traditionally been more lax
than standard attributes, with many of them having semantic meaning.
Examples include calling conventions and the vector_size attribute.
However, there is a big drawback to using GNU attributes for semantic
information: compilers that don't understand the attributes will
(by default) emit a warning rather than an error. They will go on to
compile the code as though the attributes weren't present, which will
inevitably lead to wrong code in most cases. For users who live
dangerously and disable the warning, this wrong code could even be
generated silently.
A more robust approach would be to specify the properties using
keywords, which older compilers would then reject. Some vendor-specific
extensions have already taken this approach. But traditionally, each
such keyword has been treated as a language extension in its own right.
This has three major drawbacks:
(1) The parsing rules need to be kept up-to-date as the language evolves.
(2) There are often corner cases that similar extensions handle differently.
(3) Each extension requires more custom code than a standard attribute.
The underlying problem for all three is that, unlike for true attributes,
there is no established template that extensions can reuse. The purpose
of this patch series is to try to provide such a template.
One option would have been to pick an existing keyword and do whatever
that keyword does. The problem with that is that most keywords only
apply to specific kinds of types, kinds of decls, etc., and so the
parsing rules are (for good reason) not generally applicable to all
types and decls.
Really, the “only” thing wrong with using standard attributes is that
standard attributes cannot affect semantics. In all other respects
they provide exactly what we need: a well-defined grammar that evolves
with the language, clear rules about what an attribute appertains to,
and so on.
This series therefore adds keyword “attributes” that can appear
exactly where a standard attribute can appear and that appertain
to exactly what a standard attribute would appertain to. The link is
mechanical and no opt-outs or variations are allowed. This should
make the keywords predictable for programmers who are already
familiar with standard attributes.
This does mean that these keywords will be accepted for parsing purposes
in many more places than necessary. Inappropriate uses will then be
diagnosed during semantic analysis. However, the compiler would need
to reject the keywords in those positions whatever happens, and treating
them as ostensible attributes shouldn't be any worse than the alternative.
In some cases it might even be better. For example, SME's
__arm_streaming attribute would make conceptual sense as a statement
attribute, so someone who takes a “try-it-and-see” approach might write:
__arm_streaming { …block-of-code…; }
In fact, we did consider supporting this originally. The reason for
rejecting it was that it was too difficult to implement, rather than
because it didn't make conceptual sense.
One slight disadvantage of the keyword-based approach is that it isn't
possible to use #pragma clang attribute with the keywords. Perhaps we
could add support for that in future, if it turns out to be useful.
For want of a better term, I've called the new attributes "regular"
keyword attributes (in the sense that their parsing is regular wrt
standard attributes), as opposed to "custom" keyword attributes that
have their own parsing rules.
This patch adds the Attr.td support for regular keyword attributes.
Adding an attribute with a RegularKeyword spelling causes tablegen
to define the associated tokens and to record that attributes created
with that syntax are regular keyword attributes rather than custom
keyword attributes.
A follow-on patch contains the main Parse and Sema support,
which is enabled automatically by the Attr.td definition.
Other notes:
* The series does not allow regular keyword attributes to take
arguments, but this could be added in future.
* I wondered about trying to use tablegen for
TypePrinter::printAttributedAfter too, but decided against it.
RegularKeyword is really a spelling-level classification rather
than an attribute-level classification, and in general, an attribute
could have both GNU and RegularKeyword spellings. In contrast,
printAttributedAfter is only given the attribute kind and the type
that results from applying the attribute. AFAIK, it doesn't have
access to the original attribute spelling. This means that some
attribute-specific or type-specific knowledge might be needed
to print the attribute in the best way.
* Generating the tokens automatically from Attr.td means that
pseudo's libgrammar does now depend on tablegen.
* The patch uses the SME __arm_streaming attribute as an example
for testing purposes. The attribute does not do anything at this
stage. Later SME-specific patches will add proper semantics for it,
and add other SME-related keyword attributes.
Differential Revision: https://reviews.llvm.org/D148700
This patch adds support for the following SME ACLE intrinsics (as defined
in https://arm-software.github.io/acle/main/acle.html):
- svld1_hor_za8 // also for _za16, _za32, _za64 and _za128
- svld1_hor_vnum_za8 // also for _za16, _za32, _za64 and _za128
- svld1_ver_za8 // also for _za16, _za32, _za64 and _za128
- svld1_ver_vnum_za8 // also for _za16, _za32, _za64 and _za128
- svst1_hor_za8 // also for _za16, _za32, _za64 and _za128
- svst1_hor_vnum_za8 // also for _za16, _za32, _za64 and _za128
- svst1_ver_za8 // also for _za16, _za32, _za64 and _za128
- svst1_ver_vnum_za8 // also for _za16, _za32, _za64 and _za128
SveEmitter.cpp is extended to generate arm_sme.h (currently named
arm_sme_draft_spec_subject_to_change.h) and other SME definitions from
arm_sme.td, which is modeled after arm_sve.td. Common TableGen definitions
are moved into arm_sve_sme_incl.td.
Co-authored-by: Sagar Kulkarni <sagar.kulkarni1@huawei.com>
Reviewed By: sdesmalen, kmclaughlin
Differential Revision: https://reviews.llvm.org/D127910
Reported by Coverity:
AUTO_CAUSES_COPY
Unnecessary object copies can affect performance.
1. Inside "ExtractAPIVisitor.h" file, in clang::extractapi::impl::ExtractAPIVisitorBase<<unnamed>::BatchExtractAPIVisitor>::VisitFunctionDecl(clang::FunctionDecl const *): Using the auto keyword without an & causes the copy of an object of type DynTypedNode.
2. Inside "NeonEmitter.cpp" file, in <unnamed>::Intrinsic::Intrinsic(llvm::Record *, llvm::StringRef, llvm::StringRef, <unnamed>::TypeSpec, <unnamed>::TypeSpec, <unnamed>::ClassKind, llvm::ListInit *, <unnamed>::NeonEmitter &, llvm::StringRef, llvm::StringRef, bool, bool): Using the auto keyword without an & causes the copy of an object of type Type.
3. Inside "MicrosoftCXXABI.cpp" file, in <unnamed>::MSRTTIBuilder::getClassHierarchyDescriptor(): Using the auto keyword without an & causes the copy of an object of type MSRTTIClass.
4. Inside "CGGPUBuiltin.cpp" file, in clang::CodeGen::CodeGenFunction::EmitAMDGPUDevicePrintfCallExpr(clang::CallExpr const *): Using the auto keyword without an & causes the copy of an object of type CallArg.
5. Inside "SemaDeclAttr.cpp" file, in threadSafetyCheckIsSmartPointer(clang::Sema &, clang::RecordType const *): Using the auto keyword without an & causes the copy of an object of type CXXBaseSpecifier.
6. Inside "ComputeDependence.cpp" file, in clang::computeDependence(clang::DesignatedInitExpr *): Using the auto keyword without an & causes the copy of an object of type Designator.
7. Inside "Format.cpp" file, In clang::format::affectsRange(llvm::ArrayRef<clang::tooling::Range>, unsigned int, unsigned int): Using the auto keyword without an & causes the copy of an object of type Range.
Reviewed By: tahonermann
Differential Revision: https://reviews.llvm.org/D149074
When constructing an attribute, the syntactic form was specified
using two arguments: an attribute-independent syntax type and an
attribute-specific spelling index. This patch replaces them with
a single argument.
In most cases, that's done using a new Form class that combines the
syntax and spelling into a single object. This has the minor benefit
of removing a couple of constructors. But the main purpose is to allow
additional information to be stored as well, beyond just the syntax and
spelling enums.
In the case of the attribute-specific Create and CreateImplicit
functions, the patch instead uses the attribute-specific spelling
enum. This helps to ensure that the syntax and spelling are
consistent with each other and with the Attr.td definition.
If a Create or CreateImplicit caller specified a syntax and
a spelling, the patch drops the syntax argument and keeps the
spelling. If the caller instead specified only a syntax
(so that the spelling was SpellingNotCalculated), the patch
simply drops the syntax argument.
There were two cases of the latter: TargetVersion and Weak.
TargetVersionAttrs were created with GNU syntax, which matches
their definition in Attr.td, but which is also the default.
WeakAttrs were created with Pragma syntax, which does not match
their definition in Attr.td. Dropping the argument switches
them to AS_GNU too (to match [GCC<"weak">]).
Differential Revision: https://reviews.llvm.org/D148102
The single-argument constructors of this class were not marked explicit
and that led to some incorrect uses that slipped under the radar (see
changes in SemaDeclAttr.cpp). This makes the constructors explicit,
changes the benignly incorrect uses, and updates the tablegen code to
emit the correct support code to call the explicit constructors.
While this does correct a misuse, that incorrect usage could not be
observed except via a debugger and so no additional tests are added.
Differential Revision: https://reviews.llvm.org/D147661
We may want to be able to mark certain regions as kernels even without
being in an accepted CUDA or OpenCL language mode. This patch introduces
a new attribute limited to `nvptx` targets called `nvptx_kernel` which
will perform the same metadata action as the existing CUDA ones. This
closely mimics the behaviour of the `amdgpu_kernel` attribute. This
allows for making executable NVPTX device images without using an
existing offloading language model.
I was unsure how to do this, I could potentially re-use all the CUDA
attributes and just replace the `CUDA` language requirement with an
`NVPTX` architecture requirement. Also I don't know if I should add more
than just this attribute.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D140226
Allow the user to specify a concrete USR in the external_source_symbol attribute.
That will let Clang's indexer to use Swift USRs for Swift declarations that are
represented with C++ declarations.
This new clause is used by Swift when generating a C++ header representation
of a Swift module:
https://github.com/apple/swift/pull/63002
Differential Revision: https://reviews.llvm.org/D141324
This reverts commit e43924a751.
Reason: Patch broke the MSan buildbots. More information is available on
the original phabricator review: https://reviews.llvm.org/D127812
value() has undesired exception checking semantics and calls
__throw_bad_optional_access in libc++. Moreover, the API is unavailable without
_LIBCPP_NO_EXCEPTIONS on older Mach-O platforms (see
_LIBCPP_AVAILABILITY_BAD_OPTIONAL_ACCESS).
This fixes clang.
The main goal of this work is to allow developers to express the need to place instances
of a class or structure in the read-only part of the program memory. Such a placement is
desirable to prevent any further modifications to the instances of a given structure, by
leveraging the read-only run time protection.
To achieve this, we are introducing a new attribute that can be attached to any record
definition or a declaration. The compiler enforces that every instance of this type can
be placed in the read-only segment of the program memory, provided the target triplet
supports such a placement. If an instance of a given type bearing this attribute doesn’t
satisfy such a placement, the compiler attaches an appropriate warning at suitable program
locations. In other words, adding this attribute to a type requires every instance of this
type to be a global const, which are placed in the read-only segments for most target
triplets. However, this is *not a language feature* and it *need not* be true for
*all target triplets*.
The current patch emits a warning at global variable declaration sites of types bearing
the attribute without const qualification and corresponding note attached to the type
definition/declaration.
Differential Revision: https://reviews.llvm.org/D135851
The [initial implementation][1] of __attribute__((format)) on non-variadic functions
accidentally only accepted one data argument. This worked:
```c
__attribute__((format(printf, 1, 2)))
void f(const char *, int);
```
but this didn't:
```c
__attribute__((format(printf, 1, 2)))
void f(const char *, int, int);
```
This is due to an oversight in changing the way diagnostics are emitted for
`attribute((format))`, and to a coincidence in the handling of the variadic case. Test
cases only covered the case that worked by coincidence.
Before the previous change, using `__attribute__((format))` on a non-variadic function at
all was an error and clang bailed out. After that change, it only generates a GCC
compatibility warning. However, as execution falls through, it hits a second diagnostic
when the first data argument is neither 0 nor the last parameter of the function.
This change updates that check to allow any parameter after the format string to be the
first data argument when the function is non-variadic. When the function is variadic, it
still needs to be the index of the `...` "parameter". Attribute documentation is updated
to reflect the change and new tests are added to verify that it works with _two_ data
parameters.
[1]: https://reviews.llvm.org/D112579
Radar-Id: rdar://102069446
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D137603
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Mixing LLVM and Clang address spaces can result in subtle bugs, and there
is no need for this hook to use the LLVM IR level address spaces.
Most of this change is just replacing zero with LangAS::Default,
but it also allows us to remove a few calls to getTargetAddressSpace().
This also removes a stale comment+workaround in
CGDebugInfo::CreatePointerLikeType(): ASTContext::getTypeSize() does
return the expected size for ReferenceType (and handles address spaces).
Differential Revision: https://reviews.llvm.org/D138295
This revision fixes typos where there are 2 consecutive words which are
duplicated. There should be no code changes in this revision (only
changes to comments and docs). Do let me know if there are any
undesirable changes in this revision. Thanks.
This was done as a test for D137302 and it makes sense to push these changes
Reviewed By: shafik
Differential Revision: https://reviews.llvm.org/D137491
Support SV_DispatchThreadID attribute.
Translate it into dx.thread.id in clang codeGen.
Reviewed By: beanz, aaron.ballman
Differential Revision: https://reviews.llvm.org/D133983
We had a bunch of places in the code where we were translating triple
environment enum cases to shader stage enum cases. The order of these
enums needs to be kept in sync for the translation to be simple, but we
were not properly handling out-of-bounds cases.
In normal compilation out-of-bounds cases shouldn't be possible because
the driver errors if you don't have a valid shader environment set, but
in clang tooling that error doesn't get treated as fatal and parsing
continues. This can result in crashes in clang tooling for out-of-range
shader stages.
To address this, this patch adds a constexpr method to handle the
conversion which handles out-of-range values by converting them to
`Invalid`.
Since this new method is a constexpr, the tests for this are a group of
static_asserts in the implementation file that verifies the correct
conversion for each valid enum case and validates that other cases are
converted to `Invalid`.
Reviewed By: bogner
Differential Revision: https://reviews.llvm.org/D135595
This adds support under AArch64 for the target("..") attributes. The
current parsing is very X86-shaped, this patch attempts to bring it line
with the GCC implementation from
https://gcc.gnu.org/onlinedocs/gcc/AArch64-Function-Attributes.html#AArch64-Function-Attributes.
The supported formats are:
- "arch=<arch>" strings, that specify the architecture features for a
function as per the -march=arch+feature option.
- "cpu=<cpu>" strings, that specify the target-cpu and any implied
atributes as per the -mcpu=cpu+feature option.
- "tune=<cpu>" strings, that specify the tune-cpu cpu for a function as
per -mtune.
- "+<feature>", "+no<feature>" enables/disables the specific feature, for
compatibility with GCC target attributes.
- "<feature>", "no-<feature>" enabled/disables the specific feature, for
backward compatibility with previous releases.
To do this, the parsing of target attributes has been moved into
TargetInfo to give the target the opportunity to override the existing
parsing. The only non-aarch64 change should be a minor alteration to the
error message, specifying using "CPU" to describe the cpu, not
"architecture", and the DuplicateArch/Tune from ParsedTargetAttr have
been combined into a single option.
Differential Revision: https://reviews.llvm.org/D133848
The resource binding attribute is to set the virtual registers and logical register spaces resources in HLSL are bound to.
Format is ''register(ID, space)'' like register(t3, space1).
ID must be start with
t – for shader resource views (SRV),
s – for samplers,
u – for unordered access views (UAV),
b – for constant buffer views (CBV).
Register space is default to space0.
The full documentation is available here: https://docs.microsoft.com/en-us/windows/win32/direct3d12/resource-binding-in-hlsl
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D130033
HLSL doesn't have a runtime loader model that supports global
construction by a loader or runtime initializer. To allow us to leverage
global constructors with minimal code generation impact we put calls to
the global constructors inside the generated entry function.
Differential Revision: https://reviews.llvm.org/D132977
Previously if you specified no_sanitize("known_sanitizer") on a global you
would yield a misleading error "'no_sanitize' attribute only applies to
functions and methods", but no_sanitize("unknown") would simply be a warning,
"unknown sanitizer 'unknown' ignored". This changes the former to a warning
"'no_sanitize' attribute argument not supported for globals: known_sanitizer".
Differential Revision: https://reviews.llvm.org/D133117
-E option will set entry function for hlsl.
The format is -E entry_name.
To avoid conflict with existing option with name 'E', add an extra prefix '--'.
A new field HLSLEntry is added to TargetOption.
To share code with HLSLShaderAttr, entry function will be add HLSLShaderAttr attribute too.
Reviewed By: beanz
Differential Revision: https://reviews.llvm.org/D124751
Add the ability to put __attribute__((maybe_undef)) on function arguments.
Clang codegen introduces a freeze instruction on the argument.
Differential Revision: https://reviews.llvm.org/D130224
Previous warning went on whenever a struct with a struct member with alignment => 16
was declared. This led to too many false positives and led to diagnostic lit failures
due to it being emitted too frequently. Only emit the warning when such a struct and
that struct contains a member that has an alignment of 16 bytes is passed to a caller
function since this is where the potential binary compatibility issue with XL 16.1.0
and older exists.
Reviewed By: sfertile, aaron.ballman
Differential Revision: https://reviews.llvm.org/D118350