This commit changes intrinsics that have immarg parameter attributes to
model these parameters as attributes, instead of operands. Using
operands only works if the operation is an `llvm.mlir.constant`,
otherwise the exported LLVMIR is invalid.
Reviewed By: gysit
Differential Revision: https://reviews.llvm.org/D151692
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This patch updates all remaining uses of the deprecated functionality in
mlir/. This was done with clang-tidy as described below and further
modifications to GPUBase.td and OpenMPOpsInterfaces.td.
Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
additional check:
main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
them to a pure state.
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-header-filter=mlir/ mlir/* -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
```
Differential Revision: https://reviews.llvm.org/D151542
With this change, more `memref.copy` will be lowered to the efficient `memcpy`. For example,
```
memref.copy %subview, %alloc : memref<1x576xf32, strided<[704, 1]>> to memref<1x576xf32>
```
Differential Revision: https://reviews.llvm.org/D150448
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.
Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.
Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
additional check:
https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
them to a pure state.
4. Some changes have been deleted for the following reasons:
- Some files had a variable also named cast
- Some files had not included a header file that defines the cast
functions
- Some files are definitions of the classes that have the casting
methods, so the code still refers to the method instead of the
function without adding a prefix or removing the method declaration
at the same time.
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-header-filter=mlir/ mlir/* -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
mlir/lib/**/IR/\
mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
mlir/test/lib/Dialect/Test/TestTypes.cpp\
mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
mlir/test/lib/Dialect/Test/TestAttributes.cpp\
mlir/unittests/TableGen/EnumsGenTest.cpp\
mlir/test/python/lib/PythonTestCAPI.cpp\
mlir/include/mlir/IR/
```
Differential Revision: https://reviews.llvm.org/D150123
This patch pushes the computation of the start address of a memref in one
place (a method in MemRefDescriptor.)
This allows all the (indirect) users of this method to produce the start
address in the same way.
Thanks to this change, we expose more CSEs opportunities and thanks to
that, the backend is able to properly find the `llvm.assume` expression
related to the base address as demonstrated in the added test.
Differential Revision: https://reviews.llvm.org/D148947
`memref.assume_alignment` annotates the alignment of the source buffer
not the base pointer.
Put diffrently, prior to this patch `memref.assume_alignment` would lower
to `llvm.assume %buffer.base.isAligned(X)` whereas what we want is
`llvm.assume (%buffer.base + %buffer.offset).isAligned(X)`.
In other words, we were missing to include the offset in the expression
checked by the `llvm.assume`.
Differential Revision: https://reviews.llvm.org/D148930
This is permitted by the op, but the current lowering generates invalid IR.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D144090
Although specifying an index that is out of bounds for both `memref.dim`
and `tensor.dim` produces an undefined behavior, this is still valid IR.
In particular, we could expose an out of bound index because of some
optimizations, for instance as demonstrated with
https://github.com/llvm/llvm-project/issues/60295, and this shouldn't
cause the compiler to abort.
This patch removes the overzealous verifier checks and properly handles
out of bound indices (as in it doesn't crash the compiler, but still
produces UB).
This fixes https://github.com/llvm/llvm-project/issues/60295.
Note: That `shape.dim` has a similar problem but we're not supposed to
produce UB in this case. Instead we're supposed to propagate an error in
the resulting value and I don't know how to do that at the moment. Hence I
left this part out of the patch.
Differential Revision: https://reviews.llvm.org/D143999
Address space casts are present in common MLIR targets (LLVM, SPIRV).
Some planned rewrites (such as one of the potential fixes to the fact
that the AMDGPU backend requires alloca() to live in address space 5 /
the GPU private memory space) may require such casts to be inserted
into MLIR code, where those address spaces could be represented by
arbitrary memory space attributes.
Therefore, we define memref.memory_space_cast and its lowerings.
Depends on D141293
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D141148
The code for unranked memref descriptors assumed that
sizeof(!llvm.ptr) == lizeof(!llvm.ptr<N>) for all address spaces N.
This is not always true (ex. the AMDGPU compiler backend has
sizeof(!llvm.ptr) = 64 bits but sizeof(!llvm.ptr<5>) = 32 bits, where
address space 5 is used for stack allocations). While this is merely
an overallocation in the case where a non-0 address space has pointers
smaller than the default, the existing code could cause OOB memory
accesses when sizeof(!llvm.ptr<N>) > sizeof(!llvm.ptr).
So, add an address spaces parameter to computeSizes in order to
partially resolve this class of bugs. Note that the LLVM data layout
in the conversion passes is currently set to "" and not constructed
from the MLIR data layout or some other source, but this could change
in the future.
Depends on D142159
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D141293
Remapping memory spaces is a function often needed in type
conversions, most often when going to LLVM or to/from SPIR-V (a future
commit), and it is possible that such remappings may become more
common in the future as dialects take advantage of the more generic
memory space infrastructure.
Currently, memory space remappings are handled by running a
special-purpose conversion pass before the main conversion that
changes the address space attributes. In this commit, this approach is
replaced by adding a notion of type attribute conversions
TypeConverter, which is then used to convert memory space attributes.
Then, we use this infrastructure throughout the *ToLLVM conversions.
This has the advantage of loosing the requirements on the inputs to
those passes from "all address spaces must be integers" to "all
memory spaces must be convertible to integer spaces", a looser
requirement that reduces the coupling between portions of MLIR.
ON top of that, this change leads to the removal of most of the calls
to getMemorySpaceAsInt(), bringing us closer to removing it.
(A rework of the SPIR-V conversions to use this new system will be in
a folowup commit.)
As a note, one long-term motivation for this change is that I would
eventually like to add an allocaMemorySpace key to MLIR data layouts
and then call getMemRefAddressSpace(allocaMemorySpace) in the
relevant *ToLLVM in order to ensure all alloca()s, whether incoming or
produces during the LLVM lowering, have the correct address space for
a given target.
I expect that the type attribute conversion system may be useful in
other contexts.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D142159
The revision adds a number of extra arguments to the
atomic read modify write and compare and exchange
operations. The extra arguments include the volatile,
weak, syncscope, and alignment attributes.
The implementation also adapts the fence operation to use
a assembly format and generalizes the helper used
to obtain the syncscope name.
Reviewed By: Dinistro
Differential Revision: https://reviews.llvm.org/D143554
This is the first patch in a series of patches part of this RFC: https://discourse.llvm.org/t/rfc-switching-the-llvm-dialect-and-dialect-lowerings-to-opaque-pointers/68179
This patch adds the ability to lower the memref dialect to the LLVM Dialect with the use of opaque pointers instead of typed pointers. The latter are being phased out of LLVM and this patch is part of an effort to phase them out of MLIR as well. To do this, we'll need to support both typed and opaque pointers in lowering passes, to allow downstream projects to change without breakage.
The gist of changes required to change a conversion pass are:
* Change any `LLVM::LLVMPointerType::get` calls to NOT use an element type if opaque pointers are to be used.
* Use the `build` method of `llvm.load` with the explicit result type. Since the pointer does not have an element type anymore it has to be specified explicitly.
* Use the `build` method of `llvm.getelementptr` with the explicit `basePtrType`. Ditto to above, we have to now specify what the element type is so that GEP can do its indexing calculations
* Use the `build` method of `llvm.alloca` with the explicit `elementType`. Ditto to the above, alloca needs to know how many bytes to allocate through the element type.
* Get rid of any `llvm.bitcast`s
* Adapt the tests to the above. Note that `llvm.store` changes syntax as well when using opaque pointers
I'd like to note that the 3 `build` method changes work for both opaque and typed pointers, so unconditionally using the explicit element type form is always correct.
For the testsuite a practical approach suggested by @ftynse was taken: I created a separate test file for testing the typed pointer lowering of Ops. This mostly comes down to checking that bitcasts have been created at the appropiate places, since these are required for typed pointer support.
Differential Revision: https://reviews.llvm.org/D143268
alloc uses either `malloc` or a plugable allocation function for allocating the required memory. Both of these functions always return a `llvm.ptr<i8>`, aka a pointer in the default address space. When allocating for a memref in a different memory space however, no address space cast is created, leading to invalid LLVM IR being generated.
This is currently not caught by the verifier since the pointer to the memory is always bitcast which currently lacks a verifier disallowing address space casts. Translating to actual LLVM IR would cause the verifier to go off, since bitcast cannot translate from one address space to another: https://godbolt.org/z/3a1z97rc9
This patch fixes that issue by generating an address space cast if the address space of the allocation function does not match the address space of the resulting memref.
Not sure whether this is actually a real life problem. I found this issue while converting the pass to using opaque pointers which gets rid of all the bitcasts and hence caused type errors without the address space cast.
Differential Revision: https://reviews.llvm.org/D143341
`llvm.load` op has nonTemporal field which is missing for `memref.load` and `memref.store`. This revision first adds nonTemporal field to memref's load/store op, then it lowers the field to llvm.load/store ops.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D142616
Since the recent MemRef refactoring that centralizes the lowering of
complex MemRef operations outside of the conversion framework, the
MemRefToLLVM pass doesn't directly convert these complex operations.
Instead, to fully convert the whole MemRef dialect space, MemRefToLLVM
needs to run after `expand-strided-metadata`.
Make this more obvious by changing the name of the pass and the option
associated with it from `convert-memref-to-llvm` to
`finalize-memref-to-llvm`.
The word "finalize" conveys that this pass needs to run after something
else and that something else is documented in its tablegen description.
This is a follow-up patch related to the conversation at:
https://discourse.llvm.org/t/psa-you-need-to-run-expand-strided-metadata-before-memref-to-llvm-now/66956/14
Differential Revision: https://reviews.llvm.org/D142463
collapse/expand_shape are supposed to be expanded before we hit the
lowering code.
The expansion is done with the pass called expand-strided-metadata.
This patch is NFC in spirit but not in practice because
expand-strided-metadata won't try to accomodate for "invalid" strides
for dynamic sizes that are 1 at runtime.
The previous code was broken in that respect too, but differently: it
handled only the case of row-major layouts.
That whole part is being reworked separately.
Differential Revision: https://reviews.llvm.org/D136483
The patch adds operations to `BlockAndValueMapping` and renames it to `IRMapping`. When operations are cloned, old operations are mapped to the cloned operations. This allows mapping from an operation to a cloned operation. Example:
```
Operation *opWithRegion = ...
Operation *opInsideRegion = &opWithRegion->front().front();
IRMapping map
Operation *newOpWithRegion = opWithRegion->clone(map);
Operation *newOpInsideRegion = map.lookupOrNull(opInsideRegion);
```
Migration instructions:
All includes to `mlir/IR/BlockAndValueMapping.h` should be replaced with `mlir/IR/IRMapping.h`. All uses of `BlockAndValueMapping` need to be renamed to `IRMapping`.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D139665
This is part of an effort to migrate from llvm::Optional to
std::optional. This patch changes the way mlir-tblgen generates .inc
files, and modifies tests and documentation appropriately. It is a "no
compromises" patch, and doesn't leave the user with an unpleasant mix of
llvm::Optional and std::optional.
A non-trivial change has been made to ControlFlowInterfaces to split one
constructor into two, relating to a build failure on Windows.
See also: https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Signed-off-by: Ramkumar Ramachandra <r@artagnon.com>
Differential Revision: https://reviews.llvm.org/D138934
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
This reverts commit d0650d1089.
Original commit message:
Subviews are supposed to be expanded before we hit the lowering
code.
The expansion is done with the pass called
expand-strided-metadata.
Add a test that demonstrate how these passes can be linked up to achieve
the desired lowering.
This patch is NFC in spirit but not in practice because `subview` gets
lowered into `reinterpret_cast(extract_strided_metadata, <some math>)`
which lowers in two memref descriptors (one for `reinterpert_cast` and
one for `extract_strided_metadata`), which creates some noise of the
form: `extractvalue(unrealized_cast(extractvalue[0]))[0]` that is
currently not simplified within MLIR but that is really just noop in
that case.
Differential Revision: https://reviews.llvm.org/D136377
This reverts commit c8e15afa4c.
This breaks some integration tests, see
https://lab.llvm.org/buildbot/#/builders/220/builds/10446
I have to update a bunch of RUN lines in the tests to use the new
lowering scheme. Nothing complicated but let's keep the build clean
while I'm fixing that.
Subviews are supposed to be expanded before we hit the lowering
code.
The expansion is done with the pass called
expand-strided-metadata.
Add a test that demonstrate how these passes can be linked up to achieve
the desired lowering.
This patch is NFC in spirit but not in practice because `subview` gets
lowered into `reinterpret_cast(extract_strided_metadata, <some math>)`
which lowers in two memref descriptors (one for `reinterpert_cast` and
one for `extract_strided_metadata`), which creates some noise of the
form: `extractvalue(unrealized_cast(extractvalue[0]))[0]` that is
currently not simplified within MLIR but that is really just noop in
that case.
Differential Revision: https://reviews.llvm.org/D136377
The first result of the extract_strided_metadata operation is a MemRef,
not a naked pointer.
This patch fixes the lowering of this operation in MemRefToLLVM so that
we properly materialize the full MemRef structure and not just the base,
naked, pointer.
Differential Revision: https://reviews.llvm.org/D137364
The `extract_strided_metadata` operation literally breaks down a memory
descriptor into its different components.
Teach the MemRefToLLVM conversion framework this fact.
Differential Revision: https://reviews.llvm.org/D136304
The MemRef to LLVM conversion pass emits `llvm.alloca` operations to promote MemRef descriptors to the stack when lowering `memref.copy` operations for operands which do not have a contiguous layout in memory. The original stack position is never restored after the allocations, which creates an issue when the copy operation is embedded into a loop with a high trip count, ultimately resulting in a segmentation fault due to the stack growing too large.
Below is as a minimal example illustrating the issue:
```
module {
func.func @main() {
%arg0 = memref.alloc() : memref<32x64xi64>
%arg1 = memref.alloc() : memref<16x32xi64>
%lb = arith.constant 0 : index
%ub = arith.constant 100000 : index
%step = arith.constant 1 : index
%slice = memref.subview %arg0[16,32][16,32][1,1] :
memref<32x64xi64> to memref<16x32xi64, #map>
scf.for %i = %lb to %ub step %step {
memref.copy %slice, %arg1 :
memref<16x32xi64, #map> to memref<16x32xi64>
}
return
}
}
```
When running the code above, e.g., with mlir-cpu-runner, the execution crashes with a segmentation fault:
```
$ mlir-opt \
--convert-scf-to-cf \
--convert-memref-to-llvm \
--convert-func-to-llvm
--convert-cf-to-llvm \
--reconcile-unrealized-casts <file> | \
mlir-cpu-runner \
-e main -entry-point-result=void \
--shared-libs=$PWD/build/lib/libmlir_c_runner_utils.so
[...]
Segmentation fault
```
This patch causes the code lowering a `memref.copy` operation in the MemRefToLLVM pass to emit a pair of matching `llvm.intr.stacksave` and `llvm.intr.stackrestore` operations around the promotion of memory descriptors and the subsequent call to `memrefCopy` in order to restore the stack to its original position after the call.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D135756
One constant generated in MemRefToLLVM had a hardcoded bitwidth of
64 bits. The fix uses the typeConverter to create a constant that
matches the bitwidth of the provided by the data layout. The issue was
detected in an attempt to add a verifier to the LLVM ICmp operation that
checks that the types of the compared arguments match.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D135775
Add memref.realloc and canonicalization of the op. Add conversion patterns for
lowering the op to LLVM using unaligned alloc or aligned alloc based on the
conversion option.
Add filecheck tests for parsing and converting the op. Add an integration test.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D133424
The three following ops in the memref dialect: transpose, expand_shape,
collapse_shape, have been originally designed to operate on memrefs with
strided layouts but had to go through the affine map representation as the type
did not support anything else. Make these ops produce memref values with
StridedLayoutAttr instead now that it is available.
Depends On D133938
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D133947
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.
Reviewed By: mehdi_amini, rriddle
Differential Review: https://reviews.llvm.org/D132838
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.
Reviewed By: mehdi_amini, rriddle
Differential Review: https://reviews.llvm.org/D132838
This patch "modernizes" the LLVM `insertvalue` and `extractvalue`
operations to use DenseI64ArrayAttr, since they only require an array of
indices and previously there was confusion about whether to use i32 or
i64 arrays, and to use assembly format.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D131537