`getConstantIntValue` extracts constant values from all constant-like ops, not just `arith::ConstantIndexOp`.
Differential Revision: https://reviews.llvm.org/D154356
(1) uses the previously introduce API to reuse AffineExpr parser without codedup
(2) solves the look-ahead problem when parsing level spec
Reviewed By: Peiming
Differential Revision: https://reviews.llvm.org/D154254
This might simplify frontend implementation by avoiding recomputation for the same value.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D154244
We are in the progress of migrating to a much improved surface syntax for the Sparse Tensor Encoding Attribute (STEA).
You can see a preview of this in the StableHLO RFC at
https://github.com/openxla/stablehlo/blob/main/rfcs/20230210-sparsity.md
//**This design is courtesy Wren Romano.**//
This initial revision
(1) Introduces the first version of a new parser written by Wren Romano
(2) Introduces a simple "migration plan" using NEW_SYNTAX on the STEA, which will allow us to test the new parser with new examples, as well as migrate existing examples over without the need to rewrite them all
This first "drop" merely provides the entry points to parse the new syntax. The parser is still under active development. For example, we need to address the "lookahead" issue when parsing the lvl spec (viz. do we see l0 = d0 or a direct d0). Another larger task is to actually implement "affine" parsing (since the MLIR affine parser is not accessible in other parts of the tree).
EXAMPLE:
Currently, CSR looks like
#CSR = #sparse_tensor.encoding<{
lvlTypes = ["dense","compressed"],
dimToLvl = affine_map<(i,j) -> (i,j)>
}>
but you can "force" the new parser with
#CSR = #sparse_tensor.encoding<{
NEW_SYNTAX =
(d0, d1) -> (l0 = d0 : dense, l1 = d1 : compressed)
}>
Reviewed By: Peiming
Differential Revision: https://reviews.llvm.org/D153997
At the moment, only the trailing dimensions in the vector type can be
scalable, i.e. this is supported:
vector<2x[4]xf32>
and this is not allowed:
vector<[2]x4xf32>
This patch extends the vector type so that arbitrary dimensions can be
scalable. To this end, an array of bool values is added to every vector
type to denote whether the corresponding dimensions are scalable or not.
For example, for this vector:
vector<[2]x[3]x4xf32>
the following array would be created:
{true, true, false}.
Additionally, the current syntax:
vector<[2x3]x4xf32>
is replaced with:
vector<[2]x[3]x4xf32>
This is primarily to simplify parsing (this way, the parser can easily
process one dimension at a time rather than e.g. tracking whether
"scalable block" has been entered/left).
NOTE: The `isScalableDim` parameter of `VectorType` (introduced in this
patch) makes `numScalableDims` redundant. For the time being,
`numScalableDims` is preserved to facilitate the transition between the
two parameters. `numScalableDims` will be removed in one of the
subsequent patches.
This change is a part of a larger effort to enable scalable
vectorisation in Linalg. See this RFC for more context:
* https://discourse.llvm.org/t/rfc-scalable-vectorisation-in-linalg/
Differential Revision: https://reviews.llvm.org/D153372
Old pattern was missing some cases (e.g. swapping the arguments)
but it also allowed too many cases (e.g. non-empty "absent" or
different arguments for add/mul). This fixes the issues.
Reviewed By: K-Wu
Differential Revision: https://reviews.llvm.org/D153487
The tensor levels are now explicitly categorized into different `LoopCondKind` to instruct LoopEmitter generate different code for different kinds of condition (e.g., `SparseCond`, `SparseSliceCond`, `SparseAffineIdxCond`, etc)
The process of generating a while loop is now dissembled into three steps and they are dispatched to different LoopCondKind handler.
1. Generate LoopCondition (e.g., `pos <= posHi` for `SparseCond`, `slice.isNonEmpty` for `SparseAffineIdxCond`)
2. Generate LoopBody (e.g., compute the coordinates)
3. Generate ExtraChecks (e.g., `if (onSlice(crd))` for `SparseSliceCond`)
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D152464
We recently fixed a bug in "sparsifying" such reductions, since
it incorrectly changed this into reductions over stored elements
only , which only works for add/sub/or/xor. However, we still want
to be able to "sparsify" the reductions even in the general case,
and this is a first step by rewriting them into a custom reduction
that feeds in the implicit zeros. NOTE HOWEVER, that in the long run
we want to do this better and feed in any implicit zero only ONCE
for efficiency.
Reviewed By: Peiming
Differential Revision: https://reviews.llvm.org/D152580
Even though this feature was deprecated in release 11.2,
any library before this version still supports the feature,
which is why we are making it available under a macro.
Reviewed By: K-Wu
Differential Revision: https://reviews.llvm.org/D152290
Document better that unary/binary may only feed to the output
or the input of a custom reduction (not even a regular reduction
since it may have "no value"!). Also fixes a bug when present
branch is empty and feeds into custom reduction.
Reviewed By: Peiming
Differential Revision: https://reviews.llvm.org/D152224
Note that by sparse compiler convention, dense output
is zerod out when not set, so complement results in
zeros where elements were present.
Reviewed By: wrengr
Differential Revision: https://reviews.llvm.org/D152046
Formerly, we accepted and/prod reductions as a standard
reduction but these change the semantics after sparsification
by not looking at implicit zeros. Therefore, we only accept
standard reductions that are insensitive to implicit vs.
explicit zeros, and leave the more complex reductions to
the sparse_tensor.reduce custom reduction implementation.
Reviewed By: Peiming
Differential Revision: https://reviews.llvm.org/D151929
This patch makes the following changes to `SparseTensorDimSliceAttr` methods:
* Mark `isDynamic` constexpr.
* Add new helpers `getStatic` and `getStaticString` to avoid repetition.
* Moved the definitions for `getStatic{Offset,Stride,Size}` and `isCompletelyDynamic` out of the class declaration; because there's no benefit to inlining them.
* Changed `parse` to use `kDynamic` rather than literals.
* Changed `verify` to use the `isDynamic` helper.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D150919
(These factories are used in downstream code, despite not being used within the MLIR codebase.)
Depends On D151513
Reviewed By: Peiming
Differential Revision: https://reviews.llvm.org/D151518
This is a major step along the way towards the new STEA design. While a great deal of this patch is simple renaming, there are several significant changes as well. I've done my best to ensure that this patch retains the previous behavior and error-conditions, even though those are at odds with the eventual intended semantics of the `dimToLvl` mapping. Since the majority of the compiler does not yet support non-permutations, I've also added explicit assertions in places that previously had implicitly assumed it was dealing with permutations.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D151505
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This patch updates all remaining uses of the deprecated functionality in
mlir/. This was done with clang-tidy as described below and further
modifications to GPUBase.td and OpenMPOpsInterfaces.td.
Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
additional check:
main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
them to a pure state.
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-header-filter=mlir/ mlir/* -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
```
Differential Revision: https://reviews.llvm.org/D151542