* Rename functions with underscore to camel case.
* Return C++ bools of "in_bounds" values instead of an `ArrayAttr`.
Differential Revision: https://reviews.llvm.org/D155277
There was a bug in `TransferWriteNonPermutationLowering`, a pattern that extends the permutation map of a TransferWriteOp with leading transfer dimensions of size ones. These newly added transfer dimensions are always in-bounds, because the starting point of any dimension is in-bounds. VectorToSCF inserts out-of-bounds checks based on the "in_bounds" attribute and dims that are marked as out-of-bounds but that are actually always in-bounds lead to unnecessary "scf.if" ops.
Differential Revision: https://reviews.llvm.org/D155196
It also unifies the computation of StridedLayoutAttr. If the stride is
static known value, we can just use it.
Differential Revision: https://reviews.llvm.org/D155017
Currently the transfer splitting patterns will generate an invalid cast
when the source memref for a transfer op has a non-default memory space.
This is handled by first introducing a `memref.memory_space_cast` in
such cases.
Differential Revision: https://reviews.llvm.org/D154515
This patch is a following for the previous patch https://reviews.llvm.org/D151519.
With this patch, vector.load op with narrow bitwidth (e.g., i4) can be converted to
supported wider bitwidth (e.g., i8).
Reviewed By: hanchung
Differential Revision: https://reviews.llvm.org/D154178
Remove patterns that fold tensor subset ops into vector transfer ops from the vector dialect. These patterns already exist in the tensor dialect.
Differential Revision: https://reviews.llvm.org/D154932
`getConstantIntValue` extracts constant values from all constant-like ops, not just `arith::ConstantIndexOp`.
Differential Revision: https://reviews.llvm.org/D154356
* Add `memref::getMixedSize` (same as in the tensor dialect).
* Simplify in-bounds check in `VectorTransferSplitRewritePatterns.cpp` and fix off-by-one error in the static in-bounds check.
* Use "memref::DimOp" instead of `createOrFoldDimOp` when possible.
Differential Revision: https://reviews.llvm.org/D154218
The old code used to materialize constants as ops, immediately folded them into the resulting affine map and then deleted the constant ops again. Instead, directly fold the attributes into the affine map. Furthermore, all helpers accept `OpFoldResult` instead of `Value` now. This makes the code at call sites more efficient, because it is no longer necessary to materialize a `Value`, just to be able to use these helper functions.
Note: The API has changed (accepts OpFoldResult instead of Value), otherwise this change is NFC.
Differential Revision: https://reviews.llvm.org/D153324
The new pattern will replace elementwise(broadcast) with
broadcast(elementwise) when safe.
This change affects tests for vectorising nD-extract. In one case
("vectorize_nd_tensor_extract_with_tensor_extract") I just trimmed the
test and only preserved the key parts (scalar and contiguous load from
the original Op). We could do the same with some other tests if that
helps maintainability.
Differential Revision: https://reviews.llvm.org/D152812
In the vector distribute patterns, we used to move
`vector.broadcast`s out of `vector.warp_execute_on_lane0`s
irrespectively of how they were defined.
This could create broadcast operations with invalid semantic.
E.g.,
```
%r = warop ...[32] ... -> vector<1x2xf32> {
%val = broadcast %in : vector<64xf32> to vetor<1x64xf32>
vector.yield %val : vector<1x64xf32>
}
```
=>
```
%r = warop ...[32] ... -> vector<64xf32> {
vector.yield %in : vector<64xf32>
}
// Broadcasting to a narrower type!
broadcast %r : vector<64xf32> to vector<1x2xf32>
```
The root issue is we are trying to broadcast something that is not the same
for each thread, so there is actually nothing to propagate here.
The fix checks that the broadcast we want to create actually makes sense.
Differential Revision: https://reviews.llvm.org/D152154
Consider mixed precision data type, i.e., F16 input lhs, F16 input rhs, F32 accumulation, and F32 output. This is typically written as F32 <= F16*F16 + F32.
During vectorization from linalg to vector for mixed precision data type (F32 <= F16*F16 + F32), linalg.matmul introduces arith.extf on input lhs and rhs operands.
"linalg.matmul"(%lhs, %rhs, %acc) ({
^bb0(%arg1: f16, %arg2: f16, %arg3: f32):
%lhs_f32 = "arith.extf"(%arg1) : (f16) -> f32
%rhs_f32 = "arith.extf"(%arg2) : (f16) -> f32
%mul = "arith.mulf"(%lhs_f32, %rhs_f32) : (f32, f32) -> f32
%acc = "arith.addf"(%arg3, %mul) : (f32, f32) -> f32
"linalg.yield"(%acc) : (f32) -> ()
})
There are backend that natively supports mixed-precision data type and does not need the arith.extf. For example, NVIDIA A100 GPU has mma.sync.aligned.*.f32.f16.f16.f32 that can support mixed-precision data type. However, the presence of arith.extf in the IR, introduces the unnecessary casting targeting F32 Tensor Cores instead of F16 Tensor Cores for NVIDIA backend. This patch adds a folding pattern to fold arith.extf into vector.contract
Differential Revision: https://reviews.llvm.org/D151918
In the vector distribute patterns, we used to move
`vector.transfer_read`s out of `vector.warp_execute_on_lane0`s
irrespectively of how they were defined.
This could create transfer_read operations that would read values from
within the warpOp's body from outside of the body.
E.g.,
```
warpop {
%defined_in_body
%read = transfer_read %defined_in_body
vector.yield %read
}
```
=>
```
warpop {
%defined_in_body
vector.yield ...
}
// %defined_in_body is referenced outside of its scope.
%read = transfer_read %defined_in_body
```
The fix consists in checking that all the values feeding the new
`transfer_read` are defined outside of warpOp's body.
Note: We could do this check before creating any operation, but that would
mean knowing what `affine::makeComposedAffineApply` actually do. So the
current fix is a trade off of coupling the implementations of this
propagation and `makeComposedAffineApply` versus compile time.
Differential Revision: https://reviews.llvm.org/D152149
Certain functions were declared in `VectorOps.h` instead of `VectorTransforms.h` or `VectorRewritePatterns.h`.
Differential Revision: https://reviews.llvm.org/D152146
Patterns that convert extract(transfer_read) into a scalar load where
incorrectly triggering for cases where a sub-vector instead of a scalar
was extracted.
Reviewed By: nicolasvasilache, hanchung, awarzynski
Differential Revision: https://reviews.llvm.org/D151862
This PR adds support for shape casting from and to 0-D vectors.
Reviewed By: nicolasvasilache, hanchung, awarzynski
Differential Revision: https://reviews.llvm.org/D151851
This patch extends the transfer drop unit dim patterns to support cases where the vector shape should also be reduced
(e.g., transfer_read(memref<1x4x1xf32>, vector<1x4x1xf32>) -> transfer_read(memref<4xf32>, vector<4xf32>).
Reviewed By: hanchung, pzread
Differential Revision: https://reviews.llvm.org/D151007
This patch extends the vector.extract(vector.transfer_read) -> scalar
load patterns to support vector.transfer_read with multiple uses. For
now, we check that all the uses are vector.extract operations.
Supporting multiple uses is predicated under a flag.
Reviewed By: hanchung
Differential Revision: https://reviews.llvm.org/D150812
These patterns touches the structure generated from tiling so it
affects later steps like bufferization and vector hoisting.
Instead of putting them in canonicalization, this commit creates
separate entry points for them to be called explicitly.
This is NFC regarding the functionality and tests of those patterns.
It also addresses two TODO items in the codebase.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D150702
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Context:
* https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…"
* Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This follows a previous patch that updated calls
`op.cast<T>()-> cast<T>(op)`. However some cases could not handle an
unprefixed `cast` call due to occurrences of variables named cast, or
occurring inside of class definitions which would resolve to the method.
All C++ files that did not work automatically with `cast<T>()` are
updated here to `llvm::cast` and similar with the intention that they
can be easily updated after the methods are removed through a
find-replace.
See https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
for the clang-tidy check that is used and then update printed
occurrences of the function to include `llvm::` before.
One can then run the following:
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-export-fixes /tmp/cast/casts.yaml mlir/*\
-header-filter=mlir/ -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
```
Differential Revision: https://reviews.llvm.org/D150348
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.
Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.
Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
additional check:
https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
them to a pure state.
4. Some changes have been deleted for the following reasons:
- Some files had a variable also named cast
- Some files had not included a header file that defines the cast
functions
- Some files are definitions of the classes that have the casting
methods, so the code still refers to the method instead of the
function without adding a prefix or removing the method declaration
at the same time.
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-header-filter=mlir/ mlir/* -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
mlir/lib/**/IR/\
mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
mlir/test/lib/Dialect/Test/TestTypes.cpp\
mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
mlir/test/lib/Dialect/Test/TestAttributes.cpp\
mlir/unittests/TableGen/EnumsGenTest.cpp\
mlir/test/python/lib/PythonTestCAPI.cpp\
mlir/include/mlir/IR/
```
Differential Revision: https://reviews.llvm.org/D150123
The existing vector.transpose lowering patterns only triggers if the
input vector is 2D. The revision extends the pattern to handle n-D
vectors which are effectively 2-D vectors (e.g., vector<1x4x1x8x1).
It refactors a common check about 2-D vectors from X86Vector
lowering to VectorUtils.h so it can be reused by both sides.
Reviewed By: dcaballe
Differential Revision: https://reviews.llvm.org/D149908
The pattern added here is intended as a last resort for targets like
SPIR-V where there are vector size restrictions and we need to be able
to break down large vector types. Vectorizing loads/stores for small
bitwidths (e.g. i8) relies on bitcasting to a larger element type and
patterns to bubble bitcast ops to where they can cancel.
This fails for cases such as
```
%1 = arith.trunci %0 : vector<2x32xi32> to vector<2x32xi8>
vector.transfer_write %1, %destination[%c0, %c0] {in_bounds = [true, true]} : vector<2x32xi8>, memref<2x32xi8>
```
where the `arith.trunci` op essentially does the job of one of the
bitcasts, leading to a bitcast that need to be further broken down
```
vector.bitcast %0 : vector<16xi8> to vector<4xi32>
```
Differential Revision: https://reviews.llvm.org/D149065
This pattern is useful for SPIR-V to unroll to a supported vector size
before later lowerings. The unrolling pattern is closer to an
elementwise op than the transfer ops because the index values from which
to extract elements are captured by the index vector and thus there is
no need to update the base offsets when unrolling gather.
Differential Revision: https://reviews.llvm.org/D149066
This commit exposes the transformation behind the pattern.
It is useful for more targeted application on a specific op
for once.
Reviewed By: kuhar
Differential Revision: https://reviews.llvm.org/D148758
Currently conversions to interfaces may happen implicitly (e.g.
`Attribute -> TypedAttr`), failing a runtime assert if the interface
isn't actually implemented. This change marks the `Interface(ValueT)`
constructor as explicit so that a cast is required.
Where it was straightforward to I adjusted code to not require casts,
otherwise I just made them explicit.
Depends on D148491, D148492
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D148493
This was incorrect when the number of dropped source dims was smaller
than the number of dropped dst dims. We still need to insert zeros if
there is anything dropped from the src.
Differential Revision: https://reviews.llvm.org/D148636
We need to create a new type with transposed shape after
transposing the operand in `CanonicalizeContractMatmulToMMT`.
Reviewed By: kuhar, dcaballe
Differential Revision: https://reviews.llvm.org/D148470
When dropping leading unit dims of vector.insert's operands and creating
a new vector.insert, its new position rank should be computed explicitly
in two steps: first based on the numbers of leading unit dims dropped
from the vector.insert's destination, then based on the numbers of
leading unit dims dropped from its source.
Reviewed By: pifon2a
Differential Revision: https://reviews.llvm.org/D147280
This patch removes the historical lhs and rhs masks in vector.contract,
now that vector.mask supports vector.contract and the lhs and rhs masks
are barely supported by all the vector.contract lowerings and
transformations.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D144430
This revision adds vector transform operations that allow us to better inspect the composition
of various lowerings that were previously very opaque.
This commit is NFC in that it does not change patterns beyond adding `rewriter.notifyFailure` messages
and it does not change the tests beyond breaking them into pieces and using transforms instead of
throwaway opaque test passes.
Reviewed By: ftynse, springerm
Co-authored-by: Alex Zinenko <zinenko@google.com>
Differential Revision: https://reviews.llvm.org/D146755
Vector dialect patterns have grown enormously in the past year to a point where they are now impenetrable.
Start reorganizing them towards finer-grained control.
Differential Revision: https://reviews.llvm.org/D146736
Replace references to enumerate results with either result_pairs
(reference wrapper type) or structured bindings. I did not use
structured bindings everywhere as it wasn't clear to me it would
improve readability.
This is in preparation to the switch to zip semantics which won't
support non-const lvalue reference to elements:
https://reviews.llvm.org/D144503.
I chose to use values instead of const lvalue-refs because MLIR is
biased towards avoiding `const` local variables. This won't degrade
performance because currently `result_pair` is cheap to copy (size_t
+ iterator), and in the future, the enumerator iterator dereference
will return temporaries anyway.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D146006
This is for targets that do not support gather-like ops, e.g., SPIR-V.
Gather is expanded into lower-level vector ops with memory accesses
guarded with `scf.if`.
I also considered generating `vector.maskedload`s, but decided against
it to keep the `memref` and `tensor` codepath closer together. There's a
good chance that if a target doesn't support gather it does not support
masked loads either.
Issue: https://github.com/llvm/llvm-project/issues/60905
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D145942