There was an invalid test case in `test-transfer-read-1d.mlir`. A read was going out-of-bounds, but the dimension was marked as in-bounds.
Differential Revision: https://reviews.llvm.org/D154855
As a convenience to the user, top-level sequence ops can optionally be used as matchers: the op type is specified by the type of the block argument.
This is similar to how pass pipeline targets can be specified on the command line (`-pass-pipeline='builtin.module(func.func(...))`).
Differential Revision: https://reviews.llvm.org/D153121
Add an extra check to make sure that transform IR is not getting modified by this op while it is being interpreted. This generally dangerous and we may want to enforce this for all transform ops that modify the payload in the future.
Users should generally try to apply patterns only to the piece of IR where it is needed (e.g., a matched function) and not the entire module (which may contain the transform IR).
This revision is in response to a crash in a downstream compiler that was caused by a dead `transform.structured.match` op that was removed by the GreedyPatternRewriteDriver's DCE while the enclosing sequence was being interpreted.
Differential Revision: https://reviews.llvm.org/D153113
* Remove `transform::PatternRegistry`.
* Add a new op for each currently registered pattern set.
* Change names of vector dialect pattern selector ops, so that they are consistent with the remaining code base.
* Remove redundant `transform.vector.extract_address_computations` op.
Differential Revision: https://reviews.llvm.org/D152249
All vector transform ops are now `PatternDescriptorOpInterface` ops that merely select the patterns. The patterns are applied by the `apply_patterns` op. This is to ensure that ops are properly tracked. (TrackingListener is used in the implementation of `apply_patterns`.) Furthermore, handles are no longer invalidated when applying patterns in the vector tests.
Differential Revision: https://reviews.llvm.org/D152174
This is an ongoing series of commits that are reformatting our
Python code.
Reformatting is done with `black`.
If you end up having problems merging this commit because you
have made changes to a python file, the best way to handle that
is to run git checkout --ours <yourfile> and then reformat it
with black.
If you run into any problems, post to discourse about it and
we will try to help.
RFC Thread below:
https://discourse.llvm.org/t/rfc-document-and-standardize-python-code-style
Differential Revision: https://reviews.llvm.org/D150782
The logic enabling the Arm SVE (and now SME) integration tests for
various dialects, that may run under emulation, is now duplicated in
several places.
This patch moves the configuration to the top-level MLIR integration
tests Lit config and renames the '%lli' substitution in contexts where
it will run exclusively (ArmSVE, ArmSME) on AArch64 (and possibly under
emulation) to '%lli_aarch64_cmd', and '%lli_host_or_aarch64_cmd' for
contexts where it may run AArch64 (also possibly under emulation). The
latter is for integration tests that have target-specific and
target-agnostic codepaths such as SparseTensor, which supports scalable
vectors.
The two substitutions have the same effect but the names are different to
convey this information. The '%lli_aarch64_cmd' substitution could be
used in the SparseTensor tests but that would be a misnomer if the host
were x86 and the MLIR_RUN_SVE_TESTS=OFF.
The reason for renaming the '%lli' substitution is to not prevent running other
target-specific integration tests at the same time, since the same substitution
'%lli' is used for lli in other integration tests:
* mlir/test/Integration/Dialect/Vector/CPU/X86Vector - (AVX emulation via Intel SDE)
* mlir/test/Integration/Dialect/Vector/CPU/AMX - (AMX emulation via Intel SDE)
* mlir/test/Integration/Dialect/LLVMIR/CPU/test-vp-intrinsic.mlir - (RISCV emulation via QEMU if supported, native otherwise)
and substituting '%lli' at the top-level with Arm specific logic would override
this.
Reviewed By: awarzynski
Differential Revision: https://reviews.llvm.org/D148929
This patch adds a couple of tests for targeting Arm Streaming SVE (SSVE)
mode, part of the Arm Scalable Matrix Extension (SME).
SSVE is enabled in the backend at the function boundary by specifying
the `aarch64_pstate_sm_enabled` attribute, as documented here [1]. SSVE
can be targeted from MLIR by specifying this in the passthrough
attributes [2] and compiling with
-mattr=+sme,+sve -force-streaming-compatible-sve
The passthrough will propagate to the backend where `smstart/smstop`
will be emitted around the call to the SSVE function.
The set of legal instructions changes in SSVE,
`-force-streaming-compatible-sve` avoids the use of NEON entirely and
instead lowers to (streaming-compatible) SVE. The behaviour this flag
predicates will be hooked up to the function attribute in the future
such that simply specifying this (should) lead to correct
code-generation.
Two tests are added:
* A basic LLVMIR test verifying the attribute is passed through.
* An integration test calling a SSVE function.
The integration test can be run with QEMU.
[1] https://llvm.org/docs/AArch64SME.html
[2] https://mlir.llvm.org/docs/Dialects/LLVM/#attribute-pass-through
Reviewed By: awarzynski, aartbik
Differential Revision: https://reviews.llvm.org/D148111
Love or hate it, but the vector.print operation was the very
first operation that actually made "end-to-end" CHECK integration
testing possible for MLIR. This revision adds support for
the -until recently- less common but important floating-point
types f16 and bf16.
This will become useful for accelerator specific testing (e.g. NVidia GPUs)
Reviewed By: wrengr
Differential Revision: https://reviews.llvm.org/D145207
This reverts commit 5561e17411
The logic was moved from cmake into lit fixing the issue that lead to the revert and potentially others with multi-config cmake generators
Differential Revision: https://reviews.llvm.org/D143925
This patch contains the changes required to make the vast majority of integration and runner tests run on Windows.
Historically speaking, the JIT support for Windows has been lacking behind, but recent versions of ORC JIT have now caught up and works for basically all examples in repo.
Sadly due to these tests previously not working on Windows, basically all of them are making unix-like assumptions about things like filenames, paths, shell syntax etc.
This patch fixes all these issues in one big swoop and enables Windows support for the vast majority of integration tests.
More specifically, following changes had to be done:
* The various JIT runners used paths to the runtime libraries that assumed a Unix toolchain layout and filenames. I abstracted the specific path and filename of these runtime libraries away by making the paths to the runtime libraries be passed from cmake into lit. This now also allows a much more convenient syntax: `--shared-libs=%mlir_c_runner_utils` instead of `--shared-libs=%mlir_lib_dir/lib/libmlir_c_runner_utils%shlibext`
* Some tests using python set environment variables using the `ENV=VALUE cmd` format. This works on Unix, but on Windows it has to prefixed using `env ENV=VALUE cmd`
* Some tests used C functions that are simply not available or exported on Windows (`fabsf`, `aligned_alloc`). These tests have either been adjusted or explicitly marked as `UNSUPPORTED`
Some tests remain disabled on Windows as before:
* In SparseTensor some tests have non-trivial logic for finding the runtime libraries which seems to be required for the use of emulators. I do not have the time to port these so I simply kept them disabled
* Some tests requiring special hardware which I simply cannot test remain disabled on Windows. These include usage of AVX512 or AMX
The tests for `mlir-vulkan-runner` and `mlir-spirv-runner` all work now as well and so do the vast majority of `mlir-cpu-runner`.
Differential Revision: https://reviews.llvm.org/D143925
Since the recent MemRef refactoring that centralizes the lowering of
complex MemRef operations outside of the conversion framework, the
MemRefToLLVM pass doesn't directly convert these complex operations.
Instead, to fully convert the whole MemRef dialect space, MemRefToLLVM
needs to run after `expand-strided-metadata`.
Make this more obvious by changing the name of the pass and the option
associated with it from `convert-memref-to-llvm` to
`finalize-memref-to-llvm`.
The word "finalize" conveys that this pass needs to run after something
else and that something else is documented in its tablegen description.
This is a follow-up patch related to the conversation at:
https://discourse.llvm.org/t/psa-you-need-to-run-expand-strided-metadata-before-memref-to-llvm-now/66956/14
Differential Revision: https://reviews.llvm.org/D142463
Note that I did not track why this started failing exactly,
which is why I CC Matthias on this fix. But at least we run
asan clean again for the whole suite after this change.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D142496
This reverts commit d0650d1089.
Original commit message:
Subviews are supposed to be expanded before we hit the lowering
code.
The expansion is done with the pass called
expand-strided-metadata.
Add a test that demonstrate how these passes can be linked up to achieve
the desired lowering.
This patch is NFC in spirit but not in practice because `subview` gets
lowered into `reinterpret_cast(extract_strided_metadata, <some math>)`
which lowers in two memref descriptors (one for `reinterpert_cast` and
one for `extract_strided_metadata`), which creates some noise of the
form: `extractvalue(unrealized_cast(extractvalue[0]))[0]` that is
currently not simplified within MLIR but that is really just noop in
that case.
Differential Revision: https://reviews.llvm.org/D136377
This patch is part of a larger simplification effort of vector transfer
operations. It removes the flag `lower-permutation-maps` from
VectorToSCF conversion and enables the lowering of permutation maps
by default. This means that VectorToSCF will always lower permutation
maps to independent broadcast/transpose operations before lowering
vector operations to SCF.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D138742
This is generated by running
```
sed --in-place 's/[[:space:]]\+$//' mlir/**/*.td
sed --in-place 's/[[:space:]]\+$//' mlir/**/*.mlir
```
Reviewed By: rriddle, dcaballe
Differential Revision: https://reviews.llvm.org/D138866
In D134622 the printed form of a pass manager is changed to include the
name of the op that the pass manager is anchored on. This updates the
`-pass-pipeline` argument format to include the anchor op as well, so
that the printed form of a pipeline can be directly passed to
`-pass-pipeline`. In most cases this requires updating
`-pass-pipeline='pipeline'` to
`-pass-pipeline='builtin.module(pipeline)'`.
This also fixes an outdated assert that prevented running a
`PassManager` anchored on `'any'`.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D134900
Similarly to other CMake variables used to configure LIT tests, this
patch makes sure that MLIR_RUN_ARM_SVE_TESTS is canonicalised. The
corresponding LIT configuration is updated accordingly.
Differential Revision: https://reviews.llvm.org/D136967
Add memref.realloc and canonicalization of the op. Add conversion patterns for
lowering the op to LLVM using unaligned alloc or aligned alloc based on the
conversion option.
Add filecheck tests for parsing and converting the op. Add an integration test.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D133424
All relevant operations have been switched to primarily use the strided
layout, but still support the affine map layout. Update the relevant
tests to use the strided format instead for compatibility with how ops
now print by default.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D134045
Replace the following config attributes with `mlir_lib_dir`:
- `mlir_runner_utils_dir`
- `linalg_test_lib_dir`
- `spirv_wrapper_library_dir`
- `vulkan_wrapper_library_dir`
- `mlir_integration_test_dir`
I'm going to clean up substitutions in separate changes.
Reviewed By: aartbik, mehdi_amini
Differential Revision: https://reviews.llvm.org/D133217
Introduce a new attribute to represent the strided memref layout. Strided
layouts are omnipresent in code generation flows and are the only kind of
layouts produced and supported by a half of operation in the memref dialect
(view-related, shape-related). However, they are internally represented as
affine maps that require a somewhat fragile extraction of the strides from the
linear form that also comes with an overhead. Furthermore, textual
representation of strided layouts as affine maps is difficult to read: compare
`affine_map<(d0, d1, d2)[s0, s1] -> (d0*32 + d1*s0 + s1 + d2)>` with
`strides: [32, ?, 1], offset: ?`. While a rudimentary support for parsing a
syntactically sugared version of the strided layout has existed in the codebase
for a long time, it does not go as far as this commit to make the strided
layout a first-class attribute in the IR.
This introduces the attribute and updates the tests that using the pre-existing
sugared form to use the new attribute instead. Most memref created
programmatically, e.g., in passes, still use the affine form with further
extraction of strides and will be updated separately.
Update and clean-up the memref type documentation that has gotten stale and has
been referring to the details of affine map composition that are long gone.
See https://discourse.llvm.org/t/rfc-materialize-strided-memref-layout-as-an-attribute/64211.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D132864
This commit adds support for 0-D vectors in ReductionOp.
Reviewed By: nicolasvasilache, dcaballe
Differential Revision: https://reviews.llvm.org/D131896
This was carry over from LLVM IR where the alias definition can
be ambiguous, but MLIR type aliases have no such problems.
Having the `type` keyword is superfluous and doesn't add anything.
This commit drops it, which also nicely aligns with the syntax for
attribute aliases (which doesn't have a keyword).
Differential Revision: https://reviews.llvm.org/D125501
The names of the functions that are supposed to be exported do not match the implementations. This is due in part to cac7aabbd8.
This change makes the implementations and declarations match and adds a couple missing declarations.
The new names follow the pattern of the existing `verify` functions where the prefix is maintained as `_mlir_ciface_` but the suffix follows the new naming convention.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D124891
Use the new pass manager.
This also removes the ability to run arbitrary sets of passes. Not sure if this functionality is used, but it doesn't seem to be tested.
No need to initialize passes outside of constructing the PassBuilder with the new pass manager.
Reland: Fixed custom calls to `-lower-matrix-intrinsics` in integration tests by replacing them with `-O0 -enable-matrix`.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D123425
In order to run these integration tests, it is required access to an
SVE-enabled CPU or and emulator with SVE support. In case of using
an emulator, aarch64 versions of lli and the MLIR C Runner Utils Library
are also required.
Differential Revision: https://reviews.llvm.org/D104517
This commit moves FuncOp out of the builtin dialect, and into the Func
dialect. This move has been planned in some capacity from the moment
we made FuncOp an operation (years ago). This commit handles the
functional aspects of the move, but various aspects are left untouched
to ease migration: func::FuncOp is re-exported into mlir to reduce
the actual API churn, the assembly format still accepts the unqualified
`func`. These temporary measures will remain for a little while to
simplify migration before being removed.
Differential Revision: https://reviews.llvm.org/D121266
These passes generally don't rely on any special aspects of FuncOp, and moving allows
for these passes to be used in many more situations. The passes that obviously weren't
relying on invariants guaranteed by a "function" were updated to be generic pass, the
rest were updated to be FunctionOpinterface InterfacePasses.
The test updates are NFC switching from implicit nesting (-pass -pass2) form to
the -pass-pipeline form (generic passes do not implicitly nest as op-specific passes do).
Differential Revision: https://reviews.llvm.org/D121190
The current StandardToLLVM conversion patterns only really handle
the Func dialect. The pass itself adds patterns for Arithmetic/CFToLLVM, but
those should be/will be split out in a followup. This commit focuses solely
on being an NFC rename.
Aside from the directory change, the pattern and pass creation API have been renamed:
* populateStdToLLVMFuncOpConversionPattern -> populateFuncToLLVMFuncOpConversionPattern
* populateStdToLLVMConversionPatterns -> populateFuncToLLVMConversionPatterns
* createLowerToLLVMPass -> createConvertFuncToLLVMPass
Differential Revision: https://reviews.llvm.org/D120778
This is part of the larger effort to split the standard dialect. This will also allow for pruning some
additional dependencies on Standard (done in a followup).
Differential Revision: https://reviews.llvm.org/D118202